【題目】如圖,現(xiàn)有一橫截面是一拋物線的水渠.一次,水渠管理員將一根長的標(biāo)桿一端放在水渠底部的點(diǎn),另一端露出水面并靠在水渠邊緣的點(diǎn),發(fā)現(xiàn)標(biāo)桿有浸沒在水中,露出水面部分的標(biāo)桿與水面成的夾角(標(biāo)桿與拋物線的橫截面在同一平面內(nèi)).

1)以水面所在直線為軸,建立如圖所示的直角坐標(biāo)系,求該水渠橫截面拋物線的解析式(結(jié)果保留根號(hào));

2)在(1)的條件下,求當(dāng)水面再上升時(shí)的水面寬約為多少?(,結(jié)果精確到).

【答案】1;(22.6m

【解析】

1)根據(jù)所建坐標(biāo)系,設(shè)解析式為頂點(diǎn)式.因此需求頂點(diǎn)A的坐標(biāo)和點(diǎn)B的坐標(biāo).設(shè)ABx軸交于C點(diǎn),可知AC=1m,BC=0.5m.作BDx軸于點(diǎn)D.通過解RtAOCRtBCD求點(diǎn)A、B的坐標(biāo).
2)運(yùn)用函數(shù)性質(zhì)結(jié)合解方程求解.

解:(1)設(shè)ABx軸交于C點(diǎn),可知AC=1m,BC=0.5m
BDx軸于點(diǎn)D


OA=0.5m,OC=m,
BD=m,CD=m
A0,-);
B,).
設(shè)拋物線的解析式為y=ax2-
將點(diǎn)B的坐標(biāo)代入得a=,
因而y=

2)當(dāng)水面上升時(shí),把代入

求得

此時(shí)水面寬m

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形 ABCD 中,CE⊥BD,AB=4,BC=3P BD 上一個(gè)動(dòng)點(diǎn),以 P 為圓心,PB 長半徑作⊙P,⊙P CEBD、BC 交于 F、G、H(任意兩點(diǎn)不重合),

1)半徑 BP 的長度范圍為

2)連接 BF 并延長交 CD K,若 tan KFC 3 ,求 BP

3)連接 GH,將劣弧 HG 沿著 HG 翻折交 BD 于點(diǎn) M,試探究是否為定值,若是求出該值,若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,正方形的邊長為6,點(diǎn)分別在正半軸上,點(diǎn)在第一象限.點(diǎn)正半軸上的一動(dòng)點(diǎn),且,連結(jié),將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)90度至,連結(jié),取中點(diǎn)

1)當(dāng)時(shí),求的坐標(biāo).

2)如圖2,連結(jié),以為鄰邊構(gòu)造平行四邊形記平行四邊形的面積為

①用含的代數(shù)式表示

②當(dāng)落在的直角邊上時(shí),求的度數(shù).

3)在(2)的條件下,連結(jié),記的面積為,若,則 (直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線L1:y=﹣x2+bx+c經(jīng)過點(diǎn)A(1,0)和點(diǎn)B(5,0)已知直線l的解析式為y=kx﹣5.

(1)求拋物線L1的解析式、對稱軸和頂點(diǎn)坐標(biāo).

(2)若直線l將線段AB分成1:3兩部分,求k的值;

(3)當(dāng)k=2時(shí),直線與拋物線交于M、N兩點(diǎn),點(diǎn)P是拋物線位于直線上方的一點(diǎn),當(dāng)PMN面積最大時(shí),求P點(diǎn)坐標(biāo),并求面積的最大值.

(4)將拋物線L1在x軸上方的部分沿x軸折疊到x軸下方,將這部分圖象與原拋物線剩余的部分組成的新圖象記為L2

直接寫出y隨x的增大而增大時(shí)x的取值范圍;

直接寫出直線l與圖象L2有四個(gè)交點(diǎn)時(shí)k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax2+bx+cx軸交于點(diǎn)A(﹣2,0),點(diǎn)B4,0),與y軸交于點(diǎn)C0,8),連接BC,又已知位于y軸右側(cè)且垂直于x軸的動(dòng)直線l,沿x軸正方向從O運(yùn)動(dòng)到B(不含O點(diǎn)和B點(diǎn)),且分別交拋物線、線段BC以及x軸于點(diǎn)P,D,E

1)求拋物線的表達(dá)式;

2)連接ACAP,當(dāng)直線l運(yùn)動(dòng)時(shí),求使得PEAAOC相似的點(diǎn)P的坐標(biāo);

3)作PFBC,垂足為F,當(dāng)直線l運(yùn)動(dòng)時(shí),求RtPFD面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小組在一次“在線測試”中做對的題數(shù)分別是10,8,6,9,87,8,對于這組數(shù)據(jù),下列判斷中錯(cuò)誤的是(

A.眾數(shù)是8B.中位數(shù)是8C.平均數(shù)是8D.方差是8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線y=﹣x2+bx+cx軸交于A(10)、B(30)兩點(diǎn),與y軸交于點(diǎn)C

1)求拋物線的函數(shù)解析式;

2)若直線l:線y=﹣x+m與該拋物線交于D、E兩點(diǎn),如圖.

①連接CDCE、BE,當(dāng)SBCE3SCDE時(shí),求m的值;

②是否存在m的值,使得原點(diǎn)O關(guān)于直線l的對稱點(diǎn)P剛好落在該拋物線上?如果存在,請直接寫出m的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過三點(diǎn),且

1)求的值;

2)在拋物線上求一點(diǎn)使得四邊形是以為對角線的菱形;

3)在拋物線上是否存在一點(diǎn),使得四邊形是以為對角線的菱形?若存在,求出點(diǎn)的坐標(biāo),并判斷這個(gè)菱形是否為正方形?若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校根據(jù)課程設(shè)置要求,開設(shè)了數(shù)學(xué)類拓展性課程,為了解學(xué)生最喜歡的課程內(nèi)容,隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查(每人必須且只選中其中一項(xiàng)),并將統(tǒng)計(jì)結(jié)果繪制成如下統(tǒng)計(jì)圖(不完整),請根據(jù)圖中信息回答問題:

1)求m,n的值.

2)補(bǔ)全條形統(tǒng)計(jì)圖.

3)該校共有1200名學(xué)生,試估計(jì)全校最喜歡“數(shù)學(xué)史話”的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊答案