【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O外,∠ABC的平分線與⊙O交于點(diǎn)D,C=90°.

(1)CD與⊙O有怎樣的位置關(guān)系?請說明理由;

(2)若∠CDB=60°,AB=6,求的長.

【答案】(1)相切,理由見解析;(2)π.

【解析】

(1)連接OD,根據(jù)BD是∠ABC的平分線的性質(zhì)有∠CBD=ABD,根據(jù)OD=OB,得到∠ODB=ABD,等量代換得到∠ODB=CBD,根據(jù)平行線的判定得到ODCB,根據(jù)平行線的性質(zhì)有∠ODC=C=90°,即可證明CD與⊙O相切;

(2)根據(jù)扇形的弧長公式進(jìn)行計(jì)算即可.

(1)相切.理由如下:

連接OD,

BD是∠ABC的平分線,

∴∠CBD=ABD,

又∵OD=OB,

∴∠ODB=ABD,

∴∠ODB=CBD,

ODCB,

∴∠ODC=C=90°,

CD與⊙O相切;

(2)若∠CDB=60°,可得∠ODB=30°,

∴∠AOD=60°,

又∵AB=6,

AO=3,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是邊長為6的等邊三角形,PAC邊上一動(dòng)點(diǎn),由AC運(yùn)動(dòng)(與A、C不重合),QCB延長線上一點(diǎn),與點(diǎn)P同時(shí)以相同的速度由BCB延長線方向運(yùn)動(dòng)(Q不與B重合),過PPEABE,連接PQABD

(Ⅰ)若設(shè)APx,則PC   ,QC   ;(用含x的代數(shù)式表示)

(Ⅱ)當(dāng)∠BQD30°時(shí),求AP的長;

(Ⅲ)在運(yùn)動(dòng)過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級(jí)全體同學(xué)參加了愛心一日捐捐款活動(dòng),該校隨杋抽査了部分同學(xué)捐款的情況統(tǒng)計(jì)如圖所示:

1)求出本次抽查的學(xué)生人數(shù);

2)求出捐款10元的學(xué)生人數(shù),并將條形圖補(bǔ)充完整;

3)捐款金額的眾數(shù)是   元,中位數(shù)是   

4)請估計(jì)全校八年級(jí)1000名學(xué)生,捐款20元的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,先描出點(diǎn),點(diǎn).

1)描出點(diǎn)關(guān)于軸的對稱點(diǎn)的位置,寫出的坐標(biāo) ;

2)用尺規(guī)在軸上找一點(diǎn),使的值最。ūA糇鲌D痕跡);

3)用尺規(guī)在軸上找一點(diǎn),使(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線a、b、c表示三條公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有_______處.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Rt△ABC中,ACB=90°,A=30°,BDABC的角平分線, DEAB于點(diǎn)E

1)如圖1,連接EC,求證:EBC是等邊三角形;

2)點(diǎn)M是線段CD上的一點(diǎn)(不與點(diǎn)C,D重合),以BM為一邊,在BM的下方作BMG=60°,MGDE延長線于點(diǎn)G.請你在圖2中畫出完整圖形,并直接寫出MD,DGAD之間的數(shù)量關(guān)系;

3)如圖3,點(diǎn)N是線段AD上的一點(diǎn),以BN為一邊,在BN的下方作BNG=60°NGDE延長線于點(diǎn)G,且MB=MG.試探究ND,DGAD數(shù)量之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,都是等邊三角形,點(diǎn)、、在同一條直線上,分別與、交于點(diǎn)、,交于點(diǎn),有如下結(jié)論:①是等邊三角形;②;③;④;⑤平分;⑥;⑦.其中不正確的結(jié)論的個(gè)數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,對稱軸為直線,則下列結(jié)論正確的是(

A. B. 方程的兩個(gè)根是,

C. D. 當(dāng)時(shí),的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn)、、分別在、上,且,

如果,那么四邊形________形;

如果的角平分線,那么四邊形________形.

查看答案和解析>>

同步練習(xí)冊答案