閱讀并解答問(wèn)題
用配方法可以解一元二次方程,還可以用它來(lái)解決很多問(wèn)題.例如:因?yàn)?a2≥0,所以3a2+1就有最小值1,即3a2+1≥1,只有當(dāng)a=0時(shí),才能得到這個(gè)式子的最小值1.同樣,因?yàn)?3a2≤0,所以-3a2+1有最大值1,即-3a2+1≤1,只有在a=0時(shí),才能得到這個(gè)式子的最大值1.
(1)當(dāng)x=______時(shí),代數(shù)式-2(x-1)2+3有最______(填寫(xiě)大或。┲禐開(kāi)_____.
(2)當(dāng)x=______時(shí),代數(shù)式-2x2+4x+3有最______(填寫(xiě)大或。┲禐開(kāi)_____.
(3)矩形花園的一面靠墻,另外三面的柵欄所圍成的總長(zhǎng)度是16m,當(dāng)花園與墻相鄰的邊長(zhǎng)為多少時(shí),花園的面積最大?最大面積是多少?
(1)1,大,3;     

(2)∵-2x2+4x+3=-2(x-1)2+5,
∴當(dāng)x=1時(shí),代數(shù)式-2x2+4x+3有最大值為5,
故答案為:1,大,5;

(3)根據(jù)題意可得:當(dāng)花園與墻相鄰的寬為x時(shí),
S=x(16-2x)=-2x2+16x,
當(dāng)x=-
b
2a
=-
16
2×(-2)
=4時(shí),
S最大=
4ac-b2
4a
=
-16×16
4×(-2)
=32,
∴長(zhǎng)為8時(shí),面積最大是32.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,隧道的截面由拋物線(xiàn)AED和矩形ABCD構(gòu)成,矩形的長(zhǎng)BC為8m,寬AB為2m,以BC所在的直線(xiàn)為x軸,線(xiàn)段BC的中垂線(xiàn)為y軸,建立平面直角坐標(biāo)系,y軸是拋物線(xiàn)的對(duì)稱(chēng)軸,頂點(diǎn)E到坐標(biāo)原點(diǎn)O的距離為6m.
(1)求拋物線(xiàn)的解析式;
(2)一輛貨運(yùn)卡車(chē)高4.5m,寬2.4m,它能通過(guò)該隧道嗎?
(3)如果該隧道內(nèi)設(shè)雙行道,為了安全起見(jiàn),在隧道正中間設(shè)有0.4m的隔離帶,則該輛貨運(yùn)卡車(chē)還能通過(guò)隧道嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若拋物線(xiàn)如圖所示,則該二次函數(shù)的解析式為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線(xiàn)y=ax2+bx-3與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),經(jīng)過(guò)A、B、C三點(diǎn)的圓的圓心M(1,m)恰好在此拋物線(xiàn)的對(duì)稱(chēng)軸上,⊙M的半徑為
5
.設(shè)⊙M與y軸交于D,拋物線(xiàn)的頂點(diǎn)為E.
(1)求m的值及拋物線(xiàn)的解析式;
(2)設(shè)∠DBC=α,∠CBE=β,求sin(α-β)的值;
(3)探究坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCE相似?若存在,請(qǐng)指出點(diǎn)P的位置,并直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線(xiàn)y=x2-4x+3與x軸交于兩點(diǎn)A、B(A在B左側(cè)),與y軸交于點(diǎn)C.
(1)對(duì)于任意實(shí)數(shù)m,點(diǎn)M(m,-3)是否在該拋物線(xiàn)上?請(qǐng)說(shuō)明理由;
(2)求∠ABC的度數(shù);
(3)若點(diǎn)P在拋物線(xiàn)上,且使得△PBC是以BC為直角邊的直角三角形,試求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直角坐標(biāo)系XOY中,二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(4,-
3
)
,且與x軸的兩個(gè)交點(diǎn)間的距離為6.
(1)求二次函數(shù)解析式;
(2)在x軸上方的拋物線(xiàn)上,是否存在點(diǎn)Q,使得以點(diǎn)Q、A、B為頂點(diǎn)的三角形與△ABC相似?如果存在,請(qǐng)求出Q點(diǎn)的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,一次函數(shù)y=-
1
2
x+2
分別交y軸、x軸于A、B兩點(diǎn),拋物線(xiàn)y=-x2+bx+c過(guò)A、B兩點(diǎn).
(1)求這個(gè)拋物線(xiàn)的解析式;
(2)作垂直x軸的直線(xiàn)x=t,在第一象限交直線(xiàn)AB于M,交這個(gè)拋物線(xiàn)于N.求當(dāng)t取何值時(shí),MN有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

附加題:如圖所示,已知主橋拱為拋物線(xiàn)型,在正常水位下測(cè)得主拱寬24m,最高點(diǎn)離水面8m,以水平線(xiàn)AB為x軸,AB的中點(diǎn)為原點(diǎn)建立坐標(biāo)系.
(1)此橋拱線(xiàn)所在拋物線(xiàn)的解析式.
(2)橋邊有一浮在水面部分高4m,最寬處12
2
m的魚(yú)船,試探索此船能否開(kāi)到橋下?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖①,Rt△ABC中,∠B=90°,∠CAB=30度.它的頂點(diǎn)A的坐標(biāo)為(10,0),頂點(diǎn)B的坐標(biāo)為(5,5
3
)
,AB=10,點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C的方向勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)D(0,2)出發(fā),沿y軸正方向以相同速度運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)求∠BAO的度數(shù).
(2)當(dāng)點(diǎn)P在AB上運(yùn)動(dòng)時(shí),△OPQ的面積S(平方單位)與時(shí)間t(秒)之間的函數(shù)圖象為拋物線(xiàn)的一部分,(如圖②),求點(diǎn)P的運(yùn)動(dòng)速度.
(3)求(2)中面積S與時(shí)間t之間的函數(shù)關(guān)系式及面積S取最大值時(shí)點(diǎn)P的坐標(biāo).
(4)如果點(diǎn)P,Q保持(2)中的速度不變,那么點(diǎn)P沿AB邊運(yùn)動(dòng)時(shí),∠OPQ的大小隨著時(shí)間t的增大而增大;沿著B(niǎo)C邊運(yùn)動(dòng)時(shí),∠OPQ的大小隨著時(shí)間t的增大而減小,當(dāng)點(diǎn)P沿這兩邊運(yùn)動(dòng)時(shí),使∠OPQ=90°的點(diǎn)P有幾個(gè)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案