【題目】如圖,在平面直角坐標(biāo)系內(nèi),∠OA0A190°,∠A1OA060°,以OA1為直角邊向外作RtOA1A2,使∠A2A1O90°,∠A2OA160°,按此方法進(jìn)行下去,得到 RtOA2A3,RtOA3A4,若點(diǎn)A0的坐標(biāo)是(1,0),則點(diǎn)A13的橫坐標(biāo)是_____

【答案】212

【解析】

根據(jù),,點(diǎn)的坐標(biāo)是,得,點(diǎn) 的橫坐標(biāo)是,點(diǎn) 的橫坐標(biāo)是-,同理可得點(diǎn) 的橫坐標(biāo)是,點(diǎn) 的橫坐標(biāo)是,點(diǎn) 的橫坐標(biāo)是,點(diǎn) 的橫坐標(biāo)是,點(diǎn) 的橫坐標(biāo)是,依次進(jìn)行下去,可得點(diǎn)的橫坐標(biāo).

解:∵∠OA0A190°,∠A1OA060°,點(diǎn)A0的坐標(biāo)是(1,0),

OA01,

∴點(diǎn)A1 的橫坐標(biāo)是 120,

OA12OA02

∵∠A2A1O90°,∠A2OA160°,

OA22OA14,

∴點(diǎn)A2 的橫坐標(biāo)是- OA2-2-21

依次進(jìn)行下去,RtOA2A3,RtOA3A4,

同理可得:

點(diǎn)A3 的橫坐標(biāo)是﹣2OA2=﹣8=﹣23

點(diǎn)A4 的橫坐標(biāo)是﹣8=﹣23,

點(diǎn)A5 的橫坐標(biāo)是 OA5×2OA42OA34OA21624

點(diǎn)A6 的橫坐標(biāo)是2OA52×2OA423OA36426,

點(diǎn)A7 的橫坐標(biāo)是6426,

發(fā)現(xiàn)規(guī)律,

點(diǎn)A12 的橫坐標(biāo)是212,

則點(diǎn)A13的橫坐標(biāo)是 212

故答案為:212

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,一次函數(shù)y=-2x與二次函數(shù)y=ax2+2ax+c的圖像交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與其對稱軸交于點(diǎn)C.

(1)求點(diǎn)C的坐標(biāo);

(2)設(shè)二次函數(shù)圖像的頂點(diǎn)為D,點(diǎn)C與點(diǎn)D關(guān)于 x軸對稱,且△ACD的面積等于2.

① 求二次函數(shù)的解析式;

② 在該二次函數(shù)圖像的對稱軸上求一點(diǎn)P(寫出其坐標(biāo)),使△PBC與△ACD相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線軸交于,兩點(diǎn),與軸交于點(diǎn),其對稱軸軸交于點(diǎn)

1)求拋物線的表達(dá)式;

2)如圖1,若動(dòng)點(diǎn)在對稱軸上,當(dāng)的周長最小時(shí),求點(diǎn)的坐標(biāo);

3)如圖2,設(shè)點(diǎn)關(guān)于對稱軸的對稱點(diǎn)為是線段上的一個(gè)動(dòng)點(diǎn),若,求直線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為6,點(diǎn)EAD的中點(diǎn),連接BE、CECEBD相交于點(diǎn)H,連接AH,交BE于點(diǎn)G,則GH的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線x軸、y軸分別于點(diǎn)A、點(diǎn)F,并與反比例函數(shù)的圖像交于B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),以OA為直徑作半圓,圓心為P,過點(diǎn)Bx軸的垂線,垂足為E,并與半圓P交于點(diǎn)D

1)若B、C的橫坐標(biāo)分別為x1、x2,且x2x15,求m的值;

2)判斷線段DE的長是否隨m的改變而改變,若不隨m的改變而改變,請求出DE的長;若隨m的改變而改變,請說明理由;

3)記點(diǎn)C關(guān)于直線DE的對稱點(diǎn)為C,當(dāng)四邊形CDCE為菱形時(shí),直接寫出C的坐標(biāo)和m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,過點(diǎn)E作⊙O的切線EDADEDD,直線EDAB的延長線于點(diǎn)C

1)求證:AE平分∠CAD

2)若BC=2,CE=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】低碳生活,綠色出行是我們倡導(dǎo)的一種生活方式,有關(guān)部門抽樣調(diào)查了某單位員工上下班的交通方式,繪制了兩幅統(tǒng)計(jì)圖:

(1)樣本中的總?cè)藬?shù)為  人;扇形統(tǒng)計(jì)十圖中騎自行車所在扇形的圓心角為  度;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)該單位共有1000人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數(shù)保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:解方程x2|x|20解:(1)當(dāng)x≥0時(shí),原方程可以化為x2x20,

解得x12,x2=﹣10(不合題意,舍去);(2)當(dāng)x0時(shí),原方程可以化為x2+x20,解得x1=﹣2,x210(舍去).∴原方程的解為x12x2=﹣2.那么方程x2|x1|10的解為(

A.0,1B.=﹣2,1

C.1,=﹣2D.1,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】老師隨機(jī)抽查了本學(xué)期學(xué)生讀課外書冊數(shù)的情況,繪制成條形圖(圖1)和不完整的扇形圖(圖2),其中條形圖被墨跡遮蓋了一部分.

(1)求條形圖中被遮蓋的數(shù),并寫出冊數(shù)的中位數(shù);

(2)在所抽查的學(xué)生中隨機(jī)選一人談讀書感想,求選中讀書超過5冊的學(xué)生的概率;

(3)隨后又補(bǔ)查了另外幾人,得知最少的讀了6冊,將其與之前的數(shù)據(jù)合并后,發(fā)現(xiàn)冊數(shù)的中位數(shù)沒改變,則最多補(bǔ)查了   人.

查看答案和解析>>

同步練習(xí)冊答案