已知△ABC,
(1)如圖1,若D點(diǎn)是△ABC內(nèi)任一點(diǎn)、求證:∠D=∠A+∠ABD+∠ACD.
(2)若D點(diǎn)是△ABC外一點(diǎn),位置如圖2所示.猜想∠D、∠A、∠ABD、∠ACD有怎樣的關(guān)系?請(qǐng)直接寫出所滿足的關(guān)系式.(不需要證明)
(3)若D點(diǎn)是△ABC外一點(diǎn),位置如圖3所示、猜想∠D、∠A、∠ABD、∠ACD之間有怎樣的關(guān)系,并證明你的結(jié)論.

解:(1)證明:延長(zhǎng)BD交AC于點(diǎn)E.
∵∠BDC是△CDE的外角,∴∠BDC=∠2+∠CED,
∵∠CED是△ABE的外角,∴∠CED=∠A+∠1.
∴∠BDC=∠A+∠1+∠2.即∠D=∠A+∠ABD+∠ACD.

(2)∵∠D+∠A+∠ABD+∠ACD=∠A+∠ABC+∠ACB+∠D+∠DBC+DCB,
∠A+∠ABC+∠ACB=180°,∠D+∠DBC+∠DCB=180°,
∴∠D+∠A+∠ABD+∠ACD=360°.

(3)證明:令BD、AC交于點(diǎn)E,
∵∠AED是△ABE的外角,
∴∠AED=∠1+∠A,
∵∠AED是△CDE的外角,
∴∠AED=∠D+∠2.
∴∠A+∠1=∠D+∠2即∠D+∠ACD=∠A+∠ABD.
分析:(1)由∠BDC=∠2+∠CED,∠CED=∠A+∠1,可以得出∠D=∠A+∠ABD+∠ACD.
(2)由∠D+∠A+∠ABD+∠ACD=∠A+∠ABC+∠ACB+∠D+∠DBC+DCB,∠A+∠ABC+∠ACB=180°,∠D+∠DBC+DCB=180°,可以得出∠D+∠A+∠ABD+∠ACD=360°.
(3)根據(jù)三角形的外角性質(zhì)定理即三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角之和,可知∠AED=∠1+∠A,∠AED=∠D+∠2,所以可知∠A+∠1=∠D+∠2即∠D+∠ACD=∠A+∠ABD.
點(diǎn)評(píng):本題主要考查三角形的外角性質(zhì)及三角形的內(nèi)角和定理,解題的關(guān)鍵是熟練掌握三角形的外角性質(zhì)定理即三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角之和.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

1、已知△ABC中,∠A、∠B、∠C的對(duì)邊分別是a、b、c,若a、b是關(guān)于x的一元二次方程x2-(c+4)x+4c+8=0的兩個(gè)根,判斷△ABC的形狀
直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知ABC的三邊滿足a2+b2+c2-ab-bc-ac=0,則這個(gè)三角形的形狀是( 。
A、直角三角形B、等腰三角形C、等腰直角三角形D、等邊三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知ABC中,AD為BC邊上的中線,且AB=4cm,AC=3cm,則AD的取值范圍是( 。
A、3<AD<4
B、1<AD<7
C、
1
2
<AD<
7
2
D、
1
3
<AD<
7
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC中,cosA=
1
2
,tgB=1,則△ABC的形狀是( 。
A、銳角三角形
B、直角三角形
C、鈍角三角形
D、等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC,∠B的平分線交邊AC于P,∠A的平分線交邊BC于Q,如果過點(diǎn)P、Q、C的圓也過△ABC的內(nèi)心R,且PQ=1,則PR的長(zhǎng)等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案