【題目】(2016四川省樂山市第26題)如圖1,二次函數(shù)的圖象與軸分別交于A、B兩點,與軸交于點C.若tan∠ABC=3,一元二次方程的兩根為-8、2.
(1)求二次函數(shù)的解析式;
(2)直線繞點A以AB為起始位置順時針旋轉到AC位置停止,與線段BC交于點D,P是AD的中點.
①求點P的運動路程;
②如圖2,過點D作DE垂直軸于點E,作DF⊥AC所在直線于點F,連結PE、PF,在運動過程中,∠EPF的大小是否改變?請說明理由;
(3)在(2)的條件下,連結,求△PEF周長的最小值.
【答案】(1);(2)①;②不變,理由見試題解析;(3).
【解析】
試題分析:(1)由與軸分別交于A、B兩點,且一元二次方程的兩根為-8、2,可得點A、點B的坐標,即可得到OB的長,又由tan∠ABC=3,得到點C(0,-6),將 A、B、C的坐標代入二次函數(shù)中,即可得到二次函數(shù)解析式;
(2)①如圖6.1,當l在AB位置時,P即為AB的中點H,當l運動到AC位置時,P即為AC的中點K,故P的運動路程為△ABC的中位線HK,在Rt△BOC中,由勾股定理得到BC的長,再由三角形中位線定理可得到HK的長,即P的運動路程;
②∠EPF的大小不會改變.由于,P為Rt△AED斜邊AD的中點,故PE=AD=PA,從而∠PAE=∠PEA=∠EPD,同理有∠PAF=∠PFA=∠DPF,即可得到∠EPF=2∠EAF,故∠EPF的大小不會改變;
(3)設△PEF的周長為C,則=PE+PF+EF=AD+EF,在等腰三角形PEF中,過P作PG⊥EF于點G,得到∠EPG=∠EPF=∠BAC,由于tan∠BAC=,故tan∠EPG=,得到EG=PE,EF=PE=AD,從而有=AD+EF=AD=AD,又當AD⊥BC時,AD最小,此時最小,由=30,得到AD=,從而得到最小值.
試題解析:(1)∵函數(shù)的圖象與軸分別交于A、B兩點,且一元二次方程的兩根為-8、2,∴A(-8,0)、B(2,0),即OB=2,又∵tan∠ABC=3,∴OC=6,即C(0,-6),將 A(-8,0)、B(2,0)代入中,解得:,,∴二次函數(shù)解析式為:;
(2)①如圖6.1,當l在AB位置時,P即為AB的中點H,當l運動到AC位置時,P即為AC的中點K,∴P的運動路程為△ABC的中位線HK,∴HK=BC,在Rt△BOC中,OB=2,OC=6,∴BC=,∴HK=,即P的運動路程為;
②∠EPF的大小不會改變.理由如下:
∵DE⊥AB,∴在Rt△AED中,P為斜邊AD的中點,∴PE=AD=PA,∴∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,∴∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即∠EPF=2∠EAF,又∵∠EAF大小不變,∴∠EPF的大小不會改變;
(3)設△PEF的周長為C,則=PE+PF+EF,∵PE=AD,PF=AD,∴=AD+EF,在等腰三角形PEF中,過P作PG⊥EF于點G,∴∠EPG=∠EPF=∠BAC,∵tan∠BAC=,∴tan∠EPG=,∴EG=PE,EF=PE=AD,∴=AD+EF=AD=AD,又當AD⊥BC時,AD最小,此時最小,∵=30,∴BC·AD=30,∴AD=,∴最小值為:AD=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD、CE分別是∠ABC、∠BCD的角平分線,
(1)求∠DEC的度數(shù)。
(2)直接寫出圖中所有的等腰三角形。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】PM2.5是指大氣中直徑小于或等于0.0000025m的顆粒物,也稱為可入肺顆粒物,它們含有大量的有毒、有害物質,對人體健康和大氣環(huán)境質量有很大危害.0.0000025用科學記數(shù)法可表示為( )
A.2.5×10﹣5
B.0.25×10﹣7
C.2.5×10﹣6
D.25×10﹣5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,都是由邊長為1的正方體疊成的立體圖形,例如第(1)個圖形由1個正方體疊成,第(2)個圖形由4個正方體疊成,第(3)個圖形由10個正方體疊成,依次規(guī)律,第(6)個圖形由( 。﹤正方體疊成.
……
A. 36 B. 37 C. 56 D. 84
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小東在教學樓距地面9米高的窗口C處,測得正前方旗桿頂部A點的仰角為37°,旗桿底部B點的俯角為45°.升旗時,國旗上端懸掛在距地面2.25米處. 若國旗隨國歌聲冉冉升起,并在國歌播放45秒結束時到達旗桿頂端,則國旗應以多少米/秒的速度勻速上升?
(參考數(shù)據:sian37°=0.60,cos37°=0.80,tan37°=0.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列方程中兩個實數(shù)根的和等于2的方程是( )
A.2x2﹣4x+3=0
B.2x2﹣2x﹣3=0
C.2y2+4y﹣3=0
D.2t2﹣4t﹣3=0
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com