【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別是(0,2)、(4,0),點(diǎn)P是直線y=2x+2上的一動(dòng)點(diǎn),當(dāng)以P為圓心,PO為半徑的圓與△AOB的一條邊所在直線相切時(shí),點(diǎn)P的坐標(biāo)為__________.
【答案】(0,2),(﹣1,0),(﹣,1).
【解析】
先求出點(diǎn)C的坐標(biāo),分為三種情況:圓P與邊AO相切時(shí),當(dāng)圓P與邊AB相切時(shí),當(dāng)圓P與邊BO相切時(shí),求出對(duì)應(yīng)的P點(diǎn)即可.
∵點(diǎn)A、B的坐標(biāo)分別是(0,2)、(4,0),
∴直線AB的解析式為y=-x+2,
∵點(diǎn)P是直線y=2x+2上的一動(dòng)點(diǎn),
∴兩直線互相垂直,即PA⊥AB,且C(-1,0),
當(dāng)圓P與邊AB相切時(shí),PA=PO,
∴PA=PC,即P為AC的中點(diǎn),
∴P(-,1);
當(dāng)圓P與邊AO相切時(shí),PO⊥AO,即P點(diǎn)在x軸上,
∴P點(diǎn)與C重合,坐標(biāo)為(-1,0);
當(dāng)圓P與邊BO相切時(shí),PO⊥BO,即P點(diǎn)在y軸上,
∴P點(diǎn)與A重合,坐標(biāo)為(0,2);
故符合條件的P點(diǎn)坐標(biāo)為(0,2),(-1,0),(-,1),
故答案為(0,2),(-1,0),(-,1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一點(diǎn)O,使OB=OC,以O(shè)為圓心,OB為半徑作圓,過C作CD∥AB交⊙O于點(diǎn)D,連接BD.
(1)猜想AC與⊙O的位置關(guān)系,并證明你的猜想;
(2)已知AC=6,求扇形OBC圍成的圓錐的底面圓半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面說法正確的個(gè)數(shù)有( )
①若 m>n,則;②由三條線段首尾順次相接所組成的圖形叫做三角形;③有兩個(gè)角互余的三角形一定是直角三角形;④各邊都相等的多邊形是正多邊形;⑤如果一個(gè)三角形只有一條高在三角形的內(nèi)部,那么這個(gè)三角形一定是鈍角三角形.
A.1 個(gè)B.2 個(gè)C.3 個(gè)D.4 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)三角形有兩邊長(zhǎng)分別為4、6,則第三邊上的中線l的取值范圍是( )
A.2<l<10B.1<l<5C.3<l<9D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,五邊形ABCDE中,∠A=140°,∠B=120°,∠E=90°,CP和DP分別是∠BCD、∠EDC的外角平分線,且相交于點(diǎn)P,則∠CPD=__________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】出租車司機(jī)小李某天上午營運(yùn)時(shí)是在東西走向的大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午所接六位乘客的行車?yán)锍蹋▎挝唬?/span>)如下:
,,,,,,
問:(1)將最后一位乘客送到目的地時(shí),小李在什么位置?
(2)若汽車耗油量為(升/千米),這天上午小李接送乘客,出租車共耗油多少升?
(3)若出租車起步價(jià)為8元,起步里程為(包括),超過部分每千米1.2元,問小李這天上午共得車費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),D在AB的延長(zhǎng)線上,且∠BCD=∠A.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為3,CD=4,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)操究發(fā)現(xiàn):如圖1,△ABC為等邊三角形,點(diǎn)D為AB邊上的一點(diǎn),∠DCE=30°,∠DCF=60°且CF=CD
①求∠EAF的度數(shù);
②DE與EF相等嗎?請(qǐng)說明理由
(2)類比探究:如圖2,△ABC為等腰直角三角形,∠ACB=90°,點(diǎn)D為AB邊上的一點(diǎn),∠DCE=45°,CF=CD,CF⊥CD,請(qǐng)直接寫出下列結(jié)果:
①∠EAF的度數(shù)
②線段AE,ED,DB之間的數(shù)量關(guān)系
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)方法解下列方程:
(1)(3x+1)2﹣9=0
(2)x2+4x﹣1=0
(3)3x2﹣2=4x
(4)(y+2)2=1+2y.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com