【題目】如圖,矩形ABCD中,AB=8,BC=6.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是( )
A.2
B.3
C.
D.
【答案】D
【解析】如圖,連接EF,交AC于O,
∵四邊形EGFH是菱形,
∴EF⊥AC,OE=OF,
∵四邊形ABCD是矩形,
∴∠B=∠D=90°,AB∥CD,
∴∠ACD=∠CAB,
在△CFO與△AOE中,
,
∴△CFO≌△AOE(AAS),
∴AO=CO,
∵AC= =10,
∴AO= AC=5,
∵∠CAB=∠CAB,∠AOE=∠B=90°,
∴△AOE∽△ABC,
∴ = ,
∴ = ,
∴AE= .
所以答案是:D.
【考點精析】利用菱形的性質(zhì)和矩形的性質(zhì)對題目進行判斷即可得到答案,需要熟知菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半;矩形的四個角都是直角,矩形的對角線相等.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點O是AC的中點,AC=2AB,延長AB至G,使BG=AB,連接GO交BC于E,延長GO交AD于F,連接AE.
求證:(1)△ABC≌△AOG;
(2)猜測四邊形AECF的形狀并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】三角形的一條邊與另一條邊的反向延長線組成的角,叫做三角形的外角。如圖,點D為BC延長線上一點,則∠ACD為△ABC的一個外角。
求證:∠ACD=∠A+∠B
證明:過點C作CE∥AB(過直線外一點 )
∴∠B= ( )
∠A= ( )
∵∠ACD=∠1+∠2
∴∠ACD=∠ +∠B(等量代換)
應用:如圖是一個五角星,請利用上述結(jié)論求
∠A+∠B+∠C+∠D+∠E的值為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,△ABC的位置如圖所示,(每個小方格都是邊長為1個單位長度的正方形).
(1)畫出△ABC關于y軸對稱的△A1B1C1;
(2)將△ABC繞著點A順時針旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后得到的△A2B2C2,并直接寫出點B2,C2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙M與菱形ABCD在平面直角坐標系中,點M的坐標為(﹣3,1),點A的坐標為(2,0),點B的坐標為(1,﹣ ),點D在x軸上,且點D在點A的右側(cè).
(1)求菱形ABCD的周長;
(2)若⊙M沿x軸向右以每秒2個單位長度的速度平移,菱形ABCD沿x軸向左以每秒3個單位長度的速度平移,設菱形移動的時間為t(秒),當⊙M與AD相切,且切點為AD的中點時,連接AC,求t的值及∠MAC的度數(shù);
(3)在(2)的條件下,當點M與AC所在的直線的距離為1時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的外角∠ACD的平分線CP與內(nèi)角∠ABC的平分線BP交于點P,若∠BPC=40°,則∠CAP=( 。
A. 40°B. 45°C. 50°D. 60°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC在平面直角坐標系中的位置如圖所示.A(2,3),B(3,1),C(﹣2,﹣2)三點在格點上.
(1)作出△ABC關于y軸對稱的△A1B1C1;
(2)直接寫出△ABC關于x軸對稱的△A2B2C2的各點坐標;
(3)求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人共同計算一道整式乘法題:(2x+a)(3x+b).甲由于把第一個多項式中的“+a”看成了“﹣a”,得到的結(jié)果為6x2+11x﹣10;乙由于漏抄了第二個多項式中x的系數(shù),得到的結(jié)果為2x2﹣9x+10.
(1)求a、b的值.
(2)計算這道乘法題的正確結(jié)果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB、BC、AC三邊的長分別是,,.
(1)△ABC的面積是 ;
(2)請在圖1中作出△ABC關于直線l對稱的△A1B1C1;
(3)請在圖2中畫出△DEF,是DE、EF、DF三邊的長分別是,,,并判斷△DEF的形狀,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com