【題目】一幅長20cm、寬12cm的圖案,如圖,其中有一橫兩豎的彩條,橫、豎彩條的寬度比為3:2.設豎彩條的寬度為xcm,圖案中三條彩條所占面積為ycm2.
(1)求y與x之間的函數(shù)關系式;
(2)若圖案中三條彩條所占面積是圖案面積的,求橫、豎彩條的寬度.
【答案】(1)y=﹣3x2+54x;(2)橫彩條的寬度為3cm,豎彩條的寬度為2cm.
【解析】
試題分析:(1)由橫、豎彩條的寬度比為3:2知橫彩條的寬度為xcm,根據(jù)“三條彩條面積=橫彩條面積+2條豎彩條面積﹣橫豎彩條重疊矩形的面積”,列出函數(shù)關系式化簡即可;(2)根據(jù)“三條彩條所占面積是圖案面積的”,可列出關于x的一元二次方程,整理后求解即可.
試題解析:(1)根據(jù)題意可知,橫彩條的寬度為xcm,
∴y=20×x+2×12x﹣2×xx=﹣3x2+54x,
即y與x之間的函數(shù)關系式為y=﹣3x2+54x;
(2)根據(jù)題意,得:﹣3x2+54x=×20×12,
整理,得:x2﹣18x+32=0,
解得:x1=2,x2=16(舍),
∴x=3,
答:橫彩條的寬度為3cm,豎彩條的寬度為2cm.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將長方形ABCD沿著對角線BD折疊,使點C落在處,交AD于點E.
(1)試判斷△BDE的形狀,并說明理由;
(2)若AB=6,,求△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若關于x的方程3(x﹣1)+a=b(x+1)是一元一次方程,則( 。
A. a,b為任意有理數(shù) B. a≠0
C. b≠0 D. b≠3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC=90°,E是AB上一點,且DE⊥CE.若AD=1,BC=2,CD=3,則CE與DE的數(shù)量關系正確的是( )
A.CE=DE B.CE=DE C.CE=3DE D.CE=2DE
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com