在△ABC中,AB=5,AC=13,邊BC上的中線AD=6,則BC的長是
2
61
2
61
分析:延長AD到E,使DE=AD,連接BE.先運(yùn)用SAS證明△ADC≌△EDB,得出BE=13.再由勾股定理的逆定理證明出∠BAE=90°,然后在△ABD中運(yùn)用勾股定理求出BD的長,從而得出BC=2BD.
解答:解:延長AD到E,使DE=AD,連接BE.
在△ADC與△EDB中,
AD=ED
∠ADC=∠EDB
CD=BD

∴△ADC≌△EDB(SAS),
∴AC=BE=13.
在△ABE中,AB=5,AE=12,BE=13,
∴AB2+AE2=BE2,
∴∠BAE=90°.
在△ABD中,∠BAD=90°,AB=5,AD=6,
∴BD=
AB2+AD2
=
61
,
∴BC=2
61

故答案為2
61
點評:本題考查了全等三角形的判定與性質(zhì),勾股定理及其逆定理,綜合性較強(qiáng),難度中等.題中延長中線的一倍是常用的輔助線的作法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寧德質(zhì)檢)如圖,在△ABC中,AB=AC=6,點0為AC的中點,OE⊥AB于點E,OE=
32
,以點0為圓心,OA為半徑的圓交AB于點F.
(1)求AF的長;
(2)連結(jié)FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•襄陽)如圖,在△ABC中,AB=AC,AD⊥BC于點D,將△ADC繞點A順時針旋轉(zhuǎn),使AC與AB重合,點D落在點E處,AE的延長線交CB的延長線于點M,EB的延長線交AD的延長線于點N.
求證:AM=AN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,把△ABC繞著點A旋轉(zhuǎn)至△AB1C1的位置,AB1交BC于點D,B1C1交AC于點E.求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)如圖,在△ABC中,AB是⊙O的直徑,∠B=60°,∠C=70°,則∠BOD的度數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•吉林)如圖,在△ABC中,AB=AC,D為邊BC上一點,以AB,BD為鄰邊作?ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習(xí)冊答案