【題目】如圖,△ABC內(nèi)接于⊙O,AB=AC,CF垂直直徑BD于點(diǎn)E,交邊AB于點(diǎn)F.
(1)求證:∠BFC=∠ABC.
(2)若⊙O的半徑為5,CF=6,求AF長(zhǎng).
【答案】(1)證明見解析;(2).
【解析】
(1)連結(jié)AD,由BD是直徑可得∠BAD=90°,由CF⊥BD可得∠BEF=90°,可得∠BFC=∠ADB,根據(jù)等腰三角形性質(zhì)和圓周角定理即可證明∠BFC=∠ABC;(2)連接CD,由BD是直徑可得∠BCD=90°,根據(jù)(1)的結(jié)論可得CF=BC=6,利用勾股定理可求出CD的長(zhǎng),即可得∠DBC的余弦和正弦值,進(jìn)而可得CE、BE的長(zhǎng),即可得EF的長(zhǎng),利用勾股定理可得BF的長(zhǎng),即可求出的余弦值,進(jìn)而求出AB的長(zhǎng),根據(jù)AF=AB-BF即可得答案.
(1)證明:連結(jié)AD,
∵BD是⊙O的直徑,
∴∠BAD=90°,
∵CF⊥BD,
∴∠BEF =90°,
∵∠ABD+∠ADB=90°,∠ABD+∠BFE=90°,
∴∠BFC=∠ADB,
∵AB=AC,
∴∠ABC=∠ACB,
∵∠ACB=∠ADB,
∴∠BFC=∠ABC.
(2)連結(jié)CD,
∵BD是⊙O的直徑,
∴∠BCD=90°,
∵∠BFC=∠ABC,
∴BC=CF=6,
∵BD=10,
∴CD==8,
∴cos∠DBC=,sin∠DBC=,
在Rt△BCE中,,,
∴,
∴,
∵,即,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形和正方形中,點(diǎn)在上,,將正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn),得到正方形,此時(shí)點(diǎn)在上,連接,則( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近期豬肉價(jià)格不斷走高,引起市民與政府的高度關(guān)注,當(dāng)市場(chǎng)豬肉的平均價(jià)格達(dá)到一定的單價(jià)時(shí),政府將投入儲(chǔ)備豬肉以平抑豬肉價(jià)格.
(1)從今年年初至5月20日,豬肉價(jià)格不斷走高,5月20日比年初價(jià)格上漲了60%,某市民在今年5月20日購買2.5千克豬肉至少要花100元錢,那么今年年初豬肉的最低價(jià)格為每千克多少元?
(2)5月20日豬肉價(jià)格為每千克40元,5月21日,某市決定投入儲(chǔ)備豬肉,并規(guī)定其銷售價(jià)格在5月20日每千克40元的基礎(chǔ)上下調(diào)a%出售,某超市按規(guī)定價(jià)出售一批儲(chǔ)備豬肉,該超市在非儲(chǔ)備豬肉的價(jià)格仍為40元的情況下,該天的兩種豬肉總銷量比5月20日增加了a%,且儲(chǔ)備豬肉的銷量占總銷量的,兩種豬肉銷售的總金額比5月20日提高了,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=圖象交于A(-2,1)、B(1,n)兩點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七巧板是我們祖先的一項(xiàng)卓越創(chuàng)造,被西方人譽(yù)為“東方魔板”.下面的兩幅圖正方形(如圖1)、“風(fēng)車型”(如圖2)都是由同一副七巧板拼成的,則圖中正方形ABCD,EFGH的面積比為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B在雙曲線y=(x<0)上,連接OA、AB,以OA、AB為邊作□OABC.若點(diǎn)C恰落在雙曲線y=(x>0)上,此時(shí)□OABC的面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在平行四邊形ABCD中,M是BC邊的中點(diǎn),E是邊BA延長(zhǎng)線上的一點(diǎn),連結(jié)EM,分別交線段AD、AC于點(diǎn)F、G.
(1)求證:;
(2)當(dāng)BC2=2BABE時(shí),求證:∠EMB=∠ACD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠ABM=30°,AB=20,C是射線BM上一點(diǎn).
(1)在下列條件中,可以唯一確定BC長(zhǎng)的是 ;(填寫所有符合條件的序號(hào))
①AC=13;②tan∠ACB=;③△ABC的面積為126.
(2)在(1)的答案中,選擇一個(gè)作為條件,畫出示意圖,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品形狀是長(zhǎng)方形,長(zhǎng)為8cm,它的展開圖如圖:
(1)求長(zhǎng)方體的體積;
(2)請(qǐng)為廠家設(shè)計(jì)一種包裝紙箱,使每箱能裝10件這種產(chǎn)品,要求沒有空隙且要使該紙箱所用材料盡可能少(紙箱的表面積盡可能。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com