如圖,動點O從邊長為6的等邊△ABC的頂點A出發(fā),沿著ACBA的路線勻速運動一周,速度為1個單位長度每秒,以O為圓心、為半徑的圓在運動過程中與△ABC的邊第二次相切時是點O出發(fā)后第______秒.
4
若以O為圓心、 為半徑的圓在運動過程中與△ABC的邊第二次相切,即為當點O在AC上,且和BC邊相切的情況.作O′D⊥BC于D,則O′D= ,利用解直角三角形的知識,進一步求得O′C=2,從而求得OA的長,進一步求得運動時間.
解:根據(jù)題意,則作O′D⊥BC于D,則O′D=

在直角三角形O′CD中,∠C=60°,O′D=,
∴O′C=2,
∴O′A=6-2=4,
∴以O為圓心、為半徑的圓在運動過程中與△ABC的邊第二次相切時是出發(fā)后第4秒.
故答案為:4.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

設⊙O的半徑為2,圓心O到直線的距離OP=m,且m使得關于x的方程有實數(shù)根,則直線與⊙O的位置關系為(    )
      
A.相離或相切B.相切或相交C.相離或相交D.無法確定

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖, AB與⊙O相切于點B,線段OA與弦BC垂直于點D,∠AOB=60°,BC=4cm,則切線AB=       cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

Rt△ABC中,∠C=90°,若直角邊AC=5,BC=12,則此三角形的內(nèi)切圓半徑為________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,點O為優(yōu)弧所在圓的圓心,∠AOC=108°,點DAB的延長線上, BD=BC, 則∠D的度數(shù)為(       )
A.20°B.27°
C.30°D.54°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知三角形,若過點、點作圓,那么下面說法正確的是(   )
A.這樣的圓只能作出一個
B.這樣的圓只能作出兩個
C.點不在該圓的外部,就在該圓的內(nèi)部
D.圓心分布在的中垂線上

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

 

如圖,⊙O的直徑AB=4,C為圓周上一點,AC=2,過點C作⊙O的切線l,過點Bl的垂線BD,垂足為DBD與⊙O交于點 E
求∠AEC的度數(shù);
(2). (3分) 【系統(tǒng)題型:作答題】 【閱卷方式:手動】求證:四邊形OBEC是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,的外接圓,點
上, ,點是垂足,,
連接.(1)求證:的切線.
(2)若的半徑為10cm,∠A=600,求CD的長

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題滿分8分)已知AB是⊙O的直徑,AP是⊙O的切線,A是切點,BP與⊙O交于點C.
(1)如圖①,若AP=6,PC=4,求圓的半徑(結果保留根號);
(2)如圖②,若D為AP的中點,求證:直線CD是⊙O的切線.

查看答案和解析>>

同步練習冊答案