【題目】某中學計劃從一文體公司購買甲,乙兩種型號的小黑板,經(jīng)洽談,購買一塊甲型小黑板比購買一塊乙型小黑板多用20元,且購買2塊甲型小黑板和3塊乙型小黑板共需440元.
(1)求購買一塊甲型小黑板、一塊乙型小黑板各需多少元?
(2)根據(jù)該中學實際情況,需從文體公司購買甲,乙兩種型號的小黑板共60塊,要求購買甲,乙兩種型號小黑板的總費用不超過5240元.并且購買甲型小黑板的數(shù)量不小于購買乙型小黑板數(shù)量的 .則該中學從文體公司購買甲,乙兩種型號的小黑板有哪幾種方案?哪種方案的總費用最低?
【答案】
(1)解:購買一塊甲型小黑板需x元、一塊乙型小黑板需y元,
根據(jù)題意得: ,
解得:
(2)解:設購買a塊甲型小黑板,則購買(60﹣a)塊乙型小黑板,
根據(jù)題意得: ,
解得:20≤a≤22,
∴當a=20時,60﹣a=40;當a=21時,60﹣a=39;當a=22時,60﹣a=38.
∴方案一:購買20塊甲型小黑板、40塊乙型小黑板;方案二:購買21塊甲型小黑板、39塊乙型小黑板;方案三:購買22塊甲型小黑板、38塊乙型小黑板.
∵100>80,
∴購買的甲型小黑板越少總費用越低,
∴方案一總費用最低
【解析】(1)購買一塊甲型小黑板需x元、一塊乙型小黑板需y元,根據(jù)兩種小黑標費用間的關(guān)系,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論;(2)設購買a塊甲型小黑板,則購買(60﹣a)塊乙型小黑板,根據(jù)總費用不超過5240元且購買甲型小黑板的數(shù)量不小于購買乙型小黑板數(shù)量的 ,即可得出關(guān)于a的一元一次不等式組,解之即可得出a的取值范圍,從而即可得出各購買方案,再根據(jù)兩種小黑板單價間的關(guān)系,即可得出總費用最低的購買方案.
【考點精析】本題主要考查了一元一次不等式組的應用的相關(guān)知識點,需要掌握1、審:分析題意,找出不等關(guān)系;2、設:設未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗:從不等式組的解集中找出符合題意的答案;6、答:寫出問題答案才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一個形如四邊形的點陣,第1層每邊有2個點,第2層每邊有3個點,第3層每邊有4個點,依此類推.
(1)第10層共有 個點,第n層共有 個點;
(2)如果某一層共有96個點,它是第幾層?
(3)有沒有一層點數(shù)為150個點,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合題
(1)如圖①,四邊形ABCD是正方形,點G是BC上的任意一點,BF⊥AG于點F,DE⊥AG于點E,探究BF,DE,EF之間的數(shù)量關(guān)系,第一學習小組合作探究后,得到DE﹣BF=EF,請證明這個結(jié)論;
(2)若(1)中的點G在CB的延長線上,其余條件不變,請在圖②中畫出圖形,并直接寫出此時BF,DE,EF之間的數(shù)量關(guān)系;
(3)如圖③,四邊形ABCD內(nèi)接于⊙O,AB=AD,E,F(xiàn)是AC上的兩點,且滿足∠AED=∠BFA=∠BCD,試判斷AC,DE,BF之間的數(shù)量關(guān)系,并說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線分別與y軸、x軸交于點A、點B,點C的坐標為(-3,0),D為直線AB上一動點,連接CD交y軸于點E.
(1) 點B的坐標為__________,不等式的解集為___________
(2) 若S△COE=S△ADE,求點D的坐標;
(3) 如圖2,以CD為邊作菱形CDFG,且∠CDF=60°.當點D運動時,點G在一條定直線上運動,請求出這條定直線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,點E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:①BE=DF;②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△AEC=S△ABC,其中正確結(jié)論有( 。﹤.
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,,,把矩形ABCD繞點A順時針旋轉(zhuǎn),當點D落在射線CB上的點P處時,那么線段DP的長度等于_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)請你數(shù)一數(shù),圖中有多少個小于平角的角;
(2)求出∠BOD的度數(shù);
(3)請通過計算說明OE是否平分∠BOC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解放橋是天津市的標志性建筑之一,是一座全鋼結(jié)構(gòu)的部分可開啟的橋梁. (Ⅰ)如圖①,已知解放橋可開啟部分的橋面的跨度AB等于47m,從AB的中點C處開啟,則AC開啟至AC′的位置時,AC′的長為 m;
(Ⅱ)如圖②,某校數(shù)學興趣小組要測量解放橋的全長PQ,在觀景平臺M處測得∠PMQ=54°,沿河岸MQ前行,在觀景平臺N處測得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放橋的全長PQ(tan54°≈1.4,tan73°≈3.3,結(jié)果保留整數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com