【題目】如圖,直線y= x與雙曲線y= (x>0)交于點A,將直線y= x向下平移個6單位后,與雙曲線y= (x>0)交于點B,與x軸交于點C,則C點的坐標為;若 =2,則k=

【答案】( ,0);12
【解析】解:∵將直線y= x向下平移個6單位后得到直線BC,
∴直線BC解析式為:y= x﹣6,
令y=0,得 x﹣6=0,
∴C點坐標為( ,0);
∵直線y= x與雙曲線y= (x>0)交于點A,
∴A( , ),
又∵直線y= x﹣6與雙曲線y= (x>0)交于點B,且 =2,
∴B( + ),將B的坐標代入y= 中,得
+ =k,
解得k=12.
所以答案是:( ,0),12.

【考點精析】本題主要考查了圖形的平移和一次函數(shù)的圖象和性質(zhì)的相關(guān)知識點,需要掌握對應(yīng)線段,對應(yīng)點所連線段平行(或在同一直線上)且相等;對應(yīng)角相等;平移方向和距離是它的兩要素;一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,反比例函數(shù)y= (x>0)的圖象與邊長是6的正方形OABC的兩邊AB,BC分別相交于M,N 兩點,△OMN的面積為10.若動點P在x軸上,則PM+PN的最小值是( )

A.6
B.10
C.2
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一幅三角板拼成如圖所示的圖形,過點CCF平分∠DCEDE于點F

1)求證:CF∥AB

2)求∠DFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某股民上周五購進某公司股票500股,每股30元.(星期六、星期日封盤,關(guān)閉交易)下表是本周內(nèi)每日該股票比前一天的漲跌情況(單位:元)

星期一,星期二被墨水污染,只知道星期一比上周五上漲10%,星期二比星期一下跌10%.根據(jù)以上信息,請回答:

(1)星期三收盤時,每股是多少元?

(2)本周內(nèi)每股最高價是多少元?最低價是多少元?

(3)已知該股民購進股票時付了1.5‰的手續(xù)費,賣出時還要付成交額1.5‰的手續(xù)費和1‰的交易稅.如果他在星期五收盤時全部賣出該股票,他是賺錢還是虧本?賺或虧了多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ADBC,垂足為D,點EAB上,EFBC,垂足為F

(1)ADEF平行嗎?為什么?

(2)如果∠1=∠2,且∠3115°,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了保護環(huán)境,某校環(huán)保小組成員小明收集廢電池,第一天收集1號電池4節(jié),5號電池5節(jié),總質(zhì)量為450克;第二天收集1號電池2節(jié),5號電池3節(jié),總質(zhì)量為240克.

(1)求1號電池和5號電池每節(jié)分別重多少克;

(2)學(xué)校環(huán)保小組為估算四月份收集廢電池的總質(zhì)量,他們隨機抽取了該月某5天每天收集廢電池的數(shù)量,如下表:

1號廢電池數(shù)量/節(jié)

29

30

32

28

31

5號廢電池數(shù)量/節(jié)

51

53

47

49

50

分別計算收集的兩種廢電池數(shù)量的樣本平均數(shù),并由此估算該月環(huán)保小組收集廢電池的總質(zhì)量是多少千克;

(3)試說明上述表格中數(shù)據(jù)的獲取方法是抽樣調(diào)查還是全面調(diào)查,你認為這種方法合理嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知l1∥l2,直線l1經(jīng)過原點O,直線l2對應(yīng)的函數(shù)表達式為,點A在直線l2上,AB⊥l1,垂足為B,則線段AB的長為(

A. 4 B. 6 C. 8 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC中,∠A的平分線AD和邊BC的垂直平分線ED相交于點D,過點DDF垂直于ACAC的延長線于點F.求證:AB﹣AC=2CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC的三個頂點的坐標分別為A(-3,4),B(-4,1),C(-1,2).
(1)在圖中作出ABC關(guān)于x軸的對稱圖形A1B1C1;
(2)請直接寫出點C關(guān)于y軸的對稱點C'的坐標: ;
(3)ABC的面積= ;
(4)在y軸上找一點P,使得PAC周長最小,并求出PAC周長的最小值.

查看答案和解析>>

同步練習(xí)冊答案