7.已知代數(shù)式x2+5x-4與4x+2的值相等,求x的值.

分析 利用代數(shù)式x2+5x-4與4x+2的值相等列方程得到x2+5x-4=4x+2,再整理為x2+x-6=0,然后利用因式分解法解方程即可.

解答 解:根據題意得x2+5x-4=4x+2,
整理得x2+x-6=0,
(x+3)(x-2)=0,
x+3=0或x-2=0,
解得x1=-3,x2=2.

點評 本題考查了解一元二次方程-因式分解法:先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉化為解一元一次方程的問題了(數(shù)學轉化思想).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

17.已知:如圖所示,在△ABC中,∠ABC=∠ACB,BD⊥AC,垂足為點D,CE⊥AB,垂足為點E.求證:BD=CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

18.綜合與探究:如圖,拋物線y=-$\frac{1}{4}$x2+bx+c與x軸交于A(-1,0),B(5,0)兩點,過點B作線段BC⊥x軸,交直線y=-2x于點C.

(1)求該拋物線的解析式;
(2)求點B關于直線y=-2x的對稱點B′的坐標,判定點B′是否在拋物線上,并說明理由;
(3)點P是拋物線上一動點,過點P作y軸的平行線,交線段B′C于點D,是否存在這樣的點P,使四邊形PBCD是平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

15.已知二次函數(shù)y=-x2+(m-1)x+m.
(1)證明:不論m取何值,該函數(shù)圖象與x軸總有公共點;
(2)若該函數(shù)的圖象與y軸交點于(0,3),求出頂點坐標并畫出該函數(shù);
(3)在(2)的條件下,觀察圖象,不等式-x2+(m-1)x+m>3的解集是0<x<2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

2.如圖,邊長為4的正方形OABC的兩邊在坐標軸上,以點C為頂點的拋物線經過點A,點P是拋物線上點A,C間的一個動點(含端點),過點P作PF⊥BC于點F,點D,E的坐標分別為(0,3),(-2,0),連接PD,PE,DE.
(1)求拋物線的解析式;
(2)小明探究點P的位置發(fā)現(xiàn):PD與PF的差是定值,請直接寫出PD-PF=1;并證明當點P在拋物線上A,C間運動時(不包括端點),結論仍然成立.
(3)當點P運動到什么位置時,△PDE的周長最?寫出此時P點的坐標,并求出△PDE周長的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

12.如圖,C是線段AB的中點,D是線段AC的中點,且BD=6cm,則AB的長為8cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

19.如圖,△ABC的各頂點的坐標分別為A(-3,2),B(2,1),C(3,5)
(1)畫出△ABC關于x軸對稱的△A1B1C1
(2)分別寫出點A、B、C關于y軸對稱的點A2、B2、C2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

16.如圖,直線AB,CD相交于點O,OA平分∠EOC,且∠EOC:∠EOD=2:3.
(1)求∠BOD的度數(shù);
(2)如圖2,點F在OC上,直線GH經過點F,F(xiàn)M平分∠OFG,且∠MFH-∠BOD=90°,求證:OE∥GH.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

17.某人騎自行車從甲地到乙地,到達乙地他馬上返回甲地.如圖反映的是他離甲地的距離s(km)及他騎車的時間t(h)之間的關系,則下列說法正確的是( 。
A.甲、乙兩地之間的距離為60km
B.他從甲地到乙地的平均速度為30km/h
C.當他離甲地15km時,他騎車的時間為1h
D.若他從乙地返回甲地的平均速度為10km/h,則點A表示的數(shù)字為5

查看答案和解析>>

同步練習冊答案