【題目】如圖,矩形ABCD中,AB=10,BC=5,點(diǎn)P為AB邊上一動(dòng)點(diǎn)(不與點(diǎn)A,B重合),DP交AC于點(diǎn)Q.
(1)求證:△APQ∽△CDQ;
(2)當(dāng)PD⊥AC時(shí),求線段PA的長(zhǎng)度;
(3)當(dāng)點(diǎn)P在線段AC的垂直平分線上時(shí),
求sin∠ CPB的值.
【答案】(1)證明見解析;(2)PA=;(3)sin∠ CPB=.
【解析】
試題分析:(1)利用兩角對(duì)應(yīng)相等的兩個(gè)三角形易判斷△APQ∽△CDQ;(2)由條件可推出△APD∽△DAC,得出,代入數(shù)值可求出PA的值;(3)由勾股定理能夠求出PC的長(zhǎng)度,再在Rt△CBP中求sin∠ CPB的值.
試題解析:(1)∵四邊形ABCD是矩形,∴AB∥CD,∴∠CAB=∠DCA,∠APQ=∠CDQ,∴△APQ∽△CDQ .
(2)PD⊥AC,∴∠ACD+∠PDC=90° ,∵∠PDA+∠PDA=90°,∴∠ACD=∠PDA,∵∠ADC=∠PAD=90°,∴△ADC∽△PDA,∴,,∴PA=.(3)當(dāng)點(diǎn)P在線段AC的垂直平分線上時(shí),PA=PC.設(shè)PA=x,則PB=10-x.又在矩形ABCD中,∠B=90°,∴,∴.解得:x=,∴PC=PA=.∴sin∠CPB=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】晚飯后,小林和小京在社區(qū)廣場(chǎng)散步,兩人在燈下沿直線NQ移動(dòng),如圖,當(dāng)小林正好站在廣場(chǎng)的A點(diǎn)(距N點(diǎn)5塊地磚長(zhǎng))時(shí),其影長(zhǎng)AD恰好為1塊地磚長(zhǎng);當(dāng)小京正好站在廣場(chǎng)的B點(diǎn)(距N點(diǎn)9塊地磚長(zhǎng))時(shí),其影長(zhǎng)BF恰好為2塊地磚長(zhǎng).已知廣場(chǎng)地面由邊長(zhǎng)為0.8米的正方形地磚鋪成,小林的身高AC為1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.請(qǐng)你根據(jù)以上信息,求出小京身高BE的長(zhǎng).(結(jié)果精確到0.01米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),D是△ABC外的一點(diǎn),∠AOB=110°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,連接OD.
(1)求證:△OCD是等邊三角形;
(2)當(dāng)α=150°時(shí),試判斷△AOD的形狀,并說(shuō)明理由;
(3)△AOD能否為等邊三角形?為什么?
(4)探究:當(dāng)α為多少度時(shí),△AOD是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)(1)班40名同學(xué)中,14歲的有1人,15歲的有21人,16歲的有16人,17歲的有2人,則這個(gè)班同學(xué)年齡的中位數(shù)是 歲.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O的半徑為6cm,P為線段OA的中點(diǎn),若點(diǎn)P在⊙O上,則OA的長(zhǎng)( )
A.等于6cm
B.等于12cm
C.小于6cm
D.大于12cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】課前預(yù)習(xí)是學(xué)習(xí)數(shù)學(xué)的重要環(huán)節(jié),為了了解所教班級(jí)學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,王老師對(duì)本班部分學(xué)生進(jìn)行了為期半個(gè)月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類,A:很好;B:較好;C:一般;D:較差.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(l) 王老師一共調(diào)查了多少名同學(xué)?
(2) C類女生有多少名?D類男生有多少名?并將上面條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3) 為了共同進(jìn)步,王老師想從被調(diào)查的A類和D類學(xué)生中各隨機(jī)選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)用列表法或畫樹形圖的方法求出所選兩位同學(xué)中男同學(xué)不少于1人的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn)P(a,b)和點(diǎn)Q(a,b′),給出如下定義:
若,則稱點(diǎn)Q為點(diǎn)P的限變點(diǎn).例如:點(diǎn)(2,3)的限變點(diǎn)的坐標(biāo)是(2,3),點(diǎn)(-2,5)的限變點(diǎn)的坐標(biāo)是(-2,-5).
(1)①點(diǎn)(,1)的限變點(diǎn)的坐標(biāo)是 ;
②在點(diǎn)A(-2,-1),B(-1,2)中有一個(gè)點(diǎn)是函數(shù)y=圖象上某一個(gè)點(diǎn)的限變點(diǎn),這個(gè)點(diǎn)是 ;
(2)若點(diǎn)P在函數(shù)y=-x+3(-2≤x≤k,k>-2)的圖象上,其限變點(diǎn)Q的縱坐標(biāo)b′的取值范圍是-5≤b′≤2,求k的取值范圍;
(3)若點(diǎn)P在關(guān)于x的二次函數(shù)y= x2-2tx+t2+t的圖象上,其限變點(diǎn)Q的縱坐標(biāo)b′的取值范圍是b′≥m或b′<n,其中m>n.令s=m-n,求s關(guān)于t的函數(shù)解析式并直接寫出s的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com