【題目】已知:ABC內(nèi)接于0,連接AO并延長交BC于點D

(l)如圖l,求證:ABC+CAD=90°;

(2)如圖2,過點DDEABE,若ADC=2ACB.求證:AC=2DE;

(3)如圖3,在(2)的條件下,連接BODE于點F,延長ED0于點G,連接AG,若AC= ,BF=OD,求線段AG的長.

【答案】1)證明見解析;(2)證明見解析;(3)線段AG的長為

【解析】試題分析:(1)延長AD交⊙O于點M,連接MC,由AM為⊙O的直徑得∠ACM=90°,所以∠AMCMAC=90°,根據(jù)∠ABC和∠AMC是同弧的所對的角,則有∠ABC=AMC,從而得到∠BCAD=90°;(2過點OOHACH,連接BO,由=得到∠AOB=2ACB,又因為∠ADC=2ACB,所以∠AOB=ADC,BOD=BDO ,BD=BO 又因為∠BED=AHO 、ABD=AOH,所以△BDE≌△AOH,所以DE=AH ,又因為OHAC ,AH=CH=AC ,所以AC=2DE ;(3過點OONEGN, OTABT連接OG, 因為 ,所以DE= ,又因為OA=OB,所以∠ABO=BAO,因為∠ABOBFE=90° BAOADE=90°,所以∠BFE=OFD=ODF ,所以OF=OD ,因為BF=OD ,所以OF=OD=BF,所以△BFE≌△OFN ,所以BE=ON EF=FN,又因為OF=OD ONFD,所以EF=FN=ND=,因為BE=ON OG=BD ,所以△BED≌△NOG,所以ED=NG ,所以EG= ,又因為ONEG OTAB DEAB ,所以四邊形ONET為矩形 ,所以BE=ET=ON,因為OTAB ,所以AT=BT AE=3BEAO=BD=r OD=r AD=r,因為在RtAED AE2=AD2-ED2 RtBED BE2=BD2-ED2,則可求出AE=15 AEG中由勾股定理得AG= r=- (舍去) AE=15 ,AEG中由勾股定理得AG=

試題解析:

1)證明:延長AD交⊙O于點M,連接MC,如圖所示:

AM為⊙O的直徑,

∴∠ACM=90°

∴∠AMCMAC=90°

=

∴∠ABC=AMC

∵∠AMCMAC=90° (已證)

∴∠BCAD=90°。

(2) 證明:過點OOHACH,連接BO,如圖所示:

=

∴∠AOB=2ACB

∵∠ADC=2ACB

∴∠AOB=ADC

∴∠BOD=BDO

BD=BO

∵∠BED=AHO ABD=AOH

∴△BDE≌△AOH

DE=AH

OHAC

AH=CH=AC

AC=2DE

(3) 證明:過點OONEGN, OTABT連接OG,如圖所示:

DE=

OA=OB

∴∠ABO=BAO

∵∠ABOBFE=90° BAOADE=90°

∴∠BFE=OFD=ODF

OF=OD

BF=OD

OF=OD=BF

∴△BFE≌△OFN

BE=ON EF=FN

OF=OD ONFD

EF=FN=ND=

BE=ON OG=BD

∴△BED≌△NOG

ED=NG

EG=

ONEG OTAB DEAB

∴四邊形ONET為矩形

BE=ET=ON

OTAB

AT=BT AE=3BE

AO=BD=r OD=r AD=r

RtAED AE2=AD2-ED2 RtBED BE2=BD2-ED2

r=- (舍去) AE=15

AEG中由勾股定理得AG=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于A(-1,0),B(3,0)兩點,與y軸交于點C.該拋物線的頂點為M.

(1)求該拋物線的解析式;

(2)判斷BCM的形狀,并說明理由.

(3)探究坐標軸上是否存在點P,使得以點P,A,C為頂點的三角形與BCM相似?若存在,請求出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某農(nóng)戶2014年承包荒山若干畝,改造后,種果樹2000棵,總投資7800元,2015年水果總產(chǎn)量為18000千克,此水果在市場上每千克售a元,在果園每千克售b元(b<a).該農(nóng)戶將水果拉到市場出售平均每天出售1000千克,需8人幫忙,每人每天付工資25元,農(nóng)用車運費及其他各項稅費平均每天100元.
(1)分別用含a、b表示兩種方式出售水果的收入;
(2)若a=1.3,b=1.1,且兩種出售水果方式都在相同時間內(nèi)售完全部水果,請你通過計算說明選擇哪種出售方式較好.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠B=30°,邊AB的垂直平分線DE交AB于點E,交BC于點D,CD=3,則BC的長為(

A.6
B.9
C.10
D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠A=52°,∠ABC與∠ACB的角平分線交于D1 , ∠ABD1與∠ACD1的角平分線交于點D2 , 依此類推,∠ABD4與∠ACD4的角平分線交于點D5 , 則∠BD5C的度數(shù)是(

A.56°
B.60°
C.68°
D.94°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面的圖形是由邊長為1的正方形按照某種規(guī)律排列而組成的.

(1)觀察圖形,填寫下表:

圖形個數(shù)(n)

正方形的個數(shù)

9

圖形的周長

16


(2)推測第n個圖形中,正方形的個數(shù)為 , 周長為(都用含n的代數(shù)式表示).
(3)寫出第2016個圖形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(x3y)2(x3y)2M,則M________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合題。
(1)化簡:2x2﹣[ (xy﹣x2)+8xy]﹣ xy
(2)化簡并求值: x﹣2(x﹣ y2)+(﹣ x+ y2),其中:x=﹣1,y=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是一臺自動測溫記錄儀的圖象,它反映了嵊州市冬季某天氣溫T隨時間t變化而變化的關系,觀察圖象得到下列信息,其中錯誤的是(

A.凌晨4時氣溫最低為﹣3℃
B.從0時至14時,氣溫隨時間增長而上升
C.14時氣溫最高為8℃
D.從14時至24時,氣溫隨時間增長而下降

查看答案和解析>>

同步練習冊答案