【題目】如圖所示為一機(jī)器零件的三視圖.

1)請(qǐng)寫出符合這個(gè)機(jī)器零件形狀的幾何體的名稱.

2)若俯視圖中三角形為正三角形,那么請(qǐng)根據(jù)圖中所標(biāo)的尺寸,計(jì)算這個(gè)幾何體的表面積(單位:cm2).

【答案】(1)直三棱柱;(2)

【解析】試題分析:(1)有2個(gè)視圖的輪廓是長(zhǎng)方形,那么這個(gè)幾何體為棱柱,另一個(gè)視圖是三角形,那么該幾何體為三棱柱;

(2)根據(jù)正三角形一邊上的高可得正三角形的邊長(zhǎng),表面積=側(cè)面積+2個(gè)底面積=底面周長(zhǎng)×高+2個(gè)底面積.

試題解析:(1)符合這個(gè)零件的幾何體是直三棱柱

2)如圖,△ABC是正三角形,CD⊥AB,CD=2, ,

RtADC中, ,

解得AC=4,

S表面積=4×2×3+2××4×2 =(24+8)cm2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按要求解一元二次方程

14x2﹣8x+1=0(配方法)27x5x+2=65x+2)(因式分解法)

33x2+52x+1=0(公式法)4x2﹣2x﹣8=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形中,,,,

)求的面積.

)若中點(diǎn),求線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線ABy軸于A點(diǎn),交x軸于B點(diǎn), .

已知點(diǎn),寫出點(diǎn)D關(guān)于直線AB對(duì)稱的點(diǎn)的坐標(biāo);

現(xiàn)在一直角三角板的直角頂點(diǎn)放置于AB的中點(diǎn)C,并繞C點(diǎn)旋轉(zhuǎn),兩直角邊分別交x軸、y軸于N、如圖兩點(diǎn),求證:

E是線段OB上一點(diǎn), G,交ABF,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOB=30°,OP平分AOB,PDOBDPCOBOAC,若PC=6,則PD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,同底數(shù)冪的乘法法則為:am·anamn(其中a≠0,m,n為正整數(shù)),類似地我們規(guī)定關(guān)于任意正整數(shù)m,n的一種新運(yùn)算:h(mn)h(m)·h(n),請(qǐng)根據(jù)這種新運(yùn)算填空:

(1)h(1),則h(2)________;

(2)h(1)k(k≠0),則h(n)·h(2017)________(用含nk的代數(shù)式表示,其中n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某籃球運(yùn)動(dòng)員去年共參加40場(chǎng)比賽,其中3分球的命中率為0.25,平均每場(chǎng)有123分球未投中.

(1)該運(yùn)動(dòng)員去年的比賽中共投出多少個(gè)3分球?共投中多少個(gè)3分球?

(2)在其中的一場(chǎng)比賽中,該運(yùn)動(dòng)員3分球共出手20,小亮說,該運(yùn)動(dòng)員這場(chǎng)比賽中一定投中了5個(gè)3分球,你認(rèn)為小亮的說法正確嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某手機(jī)銷售商分別以每部進(jìn)價(jià)分別為800元、670元的A、B兩種型號(hào)的手機(jī),下表是近兩周的銷售情況:

銷售時(shí)段

銷售數(shù)量

銷售收入

A種型號(hào)

B種型號(hào)

第一周

3臺(tái)

6臺(tái)

7650

第二周

4臺(tái)

10臺(tái)

11800

(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入﹣進(jìn)貨成本)

1)A、B兩種型號(hào)的手機(jī)的銷售單價(jià);

2)若手機(jī)銷售商準(zhǔn)備再采購(gòu)這兩種型號(hào)的手機(jī)共30臺(tái),且利潤(rùn)不低于4000元,求A種型號(hào)的手機(jī)至少要采購(gòu)多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點(diǎn)是等邊內(nèi)的任一點(diǎn),連接,

如圖,已知,,將繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn),使重合,得

的度數(shù)是__________.

)用等式表示線段,,之間的數(shù)量關(guān)系,并證明.(圖為備用圖)

查看答案和解析>>

同步練習(xí)冊(cè)答案