【題目】如圖,ADABC的邊BC上的高,再添加下列條件中的某一個就能推出ABC是等腰三角形.BD=CD;②∠BAD=∠CAD;③AB+BDAC+CD AB-BD=AC-CD;⑤∠BAD=∠ACD.可以添加的條件序號正確答案是( )

A.①②B.①②③C.①②③④D.①②③④⑤.

【答案】C

【解析】

可根據(jù)等腰三角形三線合一的性質來判斷①②⑤是否正確;③④要通過作等腰三角形來判斷其結論是否成立.

①∵ADBC,BD=CD

ADBC的垂直平分線,

∴△ABC是等腰三角形;

故①正確;

②當∠BAD=CAD時,

AD是∠BAC的平分線,且ADBC邊上的高;

ABD≌△ACD,

∴△BAC是等腰三角形;

故②正確;

③延長DBE,使BE=AB;延長DCF,使CF=AC;連接AE、AF

AB+BD=CD+AC,

DE=DF,又ADBC;

∴△AEF是等腰三角形;

∴∠E=F;

AB=BE

∴∠ABC=2E;

同理,得∠ACB=2F

∴∠ABC=ACB,即AB=AC,ABC是等腰三角形;

故③正確;

④△ABC中,ADBC,根據(jù)勾股定理,得:

AB2-BD2=AC2-CD2

即(AB+BD)(AB-BD=AC+CD)(AC-CD);

AB-BD=AC-CD1),

AB+BD=AC+CD2);

∴(1+2)得:,

2AB=2AC

AB=AC,

∴△ABC是等腰三角形;

故④正確;

⑤無法判定;

故⑤錯誤.

正確的是①②③④.

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】ABC三頂點A(﹣5,0)、B(﹣2,4)、C(﹣1,﹣2),A'B'C'ABC關于y軸對稱.

1)直接寫出A'、B'、C'的坐標;

2)畫出A'B'C'

3)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD120°,∠B∠D90°,在BC、CD上分別找一點MN,使△AMN周長最小時,則∠AMN∠ANM的度數(shù)為( )

A. 130°B. 120°C. 110°D. 100°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近年來,我國煤礦安全事故頻頻發(fā)生,其中危害最大的是瓦斯,其主要成分是CO.在一次礦難事件的調查中發(fā)現(xiàn):從零時起,井內空氣中CO的濃度達到4 mg/L,此后濃度呈直線型增加,在第7小時達到最高值46 mg/L,發(fā)生爆炸;爆炸后,空氣中的CO濃度成反比例下降,如圖,根據(jù)題中相關信息回答下列問題:

(1)求爆炸前后空氣中CO濃度y與時間x的函數(shù)關系式,并寫出相應的自變量取值范圍;

(2)當空氣中的CO濃度達到34 mg/L時,井下3 km的礦工接到自動報警信號,這時他們至少要以多少km/h的速度撤離才能在爆炸前逃生?

(3)礦工只有在空氣中的CO濃度降到4 mg/L及以下時,才能回到礦井開展生產自救,求礦工至少在爆炸后多少小時才能下井?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,OECD于點O,∠EOB=115°,求∠AOC的度數(shù).請補全下面的解題過程(括號中填寫推理的依據(jù)).

解:∵OECD于點O(已知),

____________).

∵∠EOB=115°(已知),

∴∠DOB=______=115°-90°=25°

∵直線ABCD相交于點O(已知),

∴∠AOC=______=25°______).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延長CA至點E,使AE=AC;延長CB至點F,使BF=BC.連接AD,AF,DF,EF.延長DB交EF于點N.

(1)求證:AD=AF;

(2)求證:BD=EF;

(3)試判斷四邊形ABNE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC中,點DBC的中點,BD=AB,ADBC

1)如圖1,求∠BAD的度數(shù);

2)如圖2,點EBC上一點,點FAC上一點,連接AE、BF交于點G,若∠AGF=60°,求證:BE=CF;

3)如圖3,在(2)的條件下,點GBF的中點,點HAG上一點,延長BHAC于點KAK=HK,BMAEAE延長線于點M,BG=9HM=10,求線段AG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,大于長為半徑畫弧,兩弧交于一點P,連接AP并延長交BC于點E,連接EF

1)四邊形ABEF_______;(選填矩形、菱形、正方形、無法確定)(直接填寫結果)

2AE,BF相交于點O,若四邊形ABEF的周長為40BF=10,則AE的長為________,∠ABC=________°.(直接填寫結果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2017湖北省恩施州)如圖,在RtABC中,∠BAC=30°,以直角邊AB為直徑作半圓交AC于點D,以AD為邊作等邊ADE,延長EDBC于點FBC=,則圖中陰影部分的面積為______.(結果不取近似值)

查看答案和解析>>

同步練習冊答案