精英家教網 > 初中數學 > 題目詳情
(2004•陜西)如圖,在Rt△ABC中,∠ACB=90°,BC>AC,以斜邊AB所在直線為x軸,以斜邊AB上的高所在直線為y軸,建立直角坐標系,若OA2+OB2=17,且線段OA、OB的長度是關于x的一元二次方程x2-mx+2(m-3)=0的兩個根.
(1)求C點的坐標;
(2)以斜邊AB為直徑作圓與y軸交于另一點E,求過A、B、E三點的拋物線的解析式,并畫出此拋物線的草圖;
(3)在拋物線上是否存在點P,使△ABP與△ABC全等?若存在,求出符合條件的P點的坐標;若不存在,說明理由.

【答案】分析:(1)線段OA、OB的長度是關于x的一元二次方程x2-mx+2(m-3)=0的兩個根.根據韋達定理就可以得到關于OA,OB的兩個式子,再已知OA2+OB2=17,就可以得到一個關于m的方程,從而求出m的值.求出OA,OB.根據OC2=OA•OB就可以求出C點的坐標;
(2)由第一問很容易求出A,B的坐標.連接AB的中點,設是M,與E,在直角△OME中,根據勾股定理就可以求出OE的長,得到E點的坐標,利用待定系數法就可以求出拋物線的解析式;
(3)E點就是滿足條件的點.同時C,E關于拋物線的對稱軸的對稱點也是滿足條件的點.
解答:解:(1)∵線段OA、OB的長度是關于x的一元二次方程x2-mx+2(m-3)=0的兩個根,

又∵OA2+OB2=17,
∴(OA+OB)2-2•OA•OB=17,(3)
∴把(1)(2)代入(3),得m2-4(m-3)=17,
∴m2-4m-5=0,
解之,得m=-1或m=5,
又知OA+OB=m>0,
∴m=-1應舍去,
∴當m=5時,得方程x2-5x+4=0,
解之,得x=1或x=4,
∵BC>AC,
∴OB>OA,
∴OA=1,OB=4,
在Rt△ABC中,∠ACB=90°,CO⊥AB,
∴△AOC∽△COB,
∴OC2=OA•OB=1×4=4,
∴OC=2,
∴C(0,2);

(2)∵OA=1,OB=4,C、E兩點關于x軸對稱,
∴A(-1,0),B(4,0),E(0,-2),
設經過A、B、E三點的拋物線的解析式為y=ax2+bx+c,
,
∴所求拋物線解析式為;

(3)存在,
∵點E是拋物線與圓的交點,
∴Rt△ACB≌RT△AEB,
∴E(0,-2)符合條件,
∵圓心的坐標(,0)在拋物線的對稱軸上,
∴這個圓和這條拋物線均關于拋物線的對稱軸對稱,
∴點E關于拋物線對稱軸的對稱點E′也符合題意,
∴可求得E′(3,-2),
∴拋物線上存在點P符合題意,它們的坐標是(0,-2)和(3,-2).
點評:本題是二次函數與圓以及全等三角形相結合的題目,難度較大,利用數形結合有利于對題目的理解.
練習冊系列答案
相關習題

科目:初中數學 來源:2004年陜西省中考數學試卷(解析版) 題型:解答題

(2004•陜西)如圖,在Rt△ABC中,∠ACB=90°,BC>AC,以斜邊AB所在直線為x軸,以斜邊AB上的高所在直線為y軸,建立直角坐標系,若OA2+OB2=17,且線段OA、OB的長度是關于x的一元二次方程x2-mx+2(m-3)=0的兩個根.
(1)求C點的坐標;
(2)以斜邊AB為直徑作圓與y軸交于另一點E,求過A、B、E三點的拋物線的解析式,并畫出此拋物線的草圖;
(3)在拋物線上是否存在點P,使△ABP與△ABC全等?若存在,求出符合條件的P點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:2004年全國中考數學試題匯編《圓》(04)(解析版) 題型:選擇題

(2004•陜西)如圖,⊙O1和⊙O2內切,它們的半徑分別為3和1,過O1作⊙O2的切線,切點為A,則O1A的長為( )

A.2
B.4
C.
D.

查看答案和解析>>

科目:初中數學 來源:2004年全國中考數學試題匯編《三角形》(04)(解析版) 題型:填空題

(2004•陜西)如圖,有一腰長為5cm,底邊長為4cm的等腰三角形紙片,沿著底邊上的中線將紙片剪開,得到兩個全等的直角三角形紙片,用這兩個直角三角形紙片拼成的平面圖形中有    個不同的四邊形.

查看答案和解析>>

科目:初中數學 來源:2009年江蘇省中考數學模擬試卷(江陰篇)(解析版) 題型:選擇題

(2004•陜西)如圖所示,若數軸上的兩點A,B表示的數分別為a,b,則下列結論正確的是( )

A.b-a>0
B.a-b>0
C.2a+b>0
D.a+b>0

查看答案和解析>>

同步練習冊答案