【題目】如圖,已知點O為Rt△ABC斜邊AC上一點,以點O為圓心,OA長為半徑的⊙O與BC相切于點E,與AC相交于點D,連接AE.
(1)求證:AE平分∠CAB;
(2)探求圖中∠1與∠C的數(shù)量關系,并求當AE=EC時tanC的值.
【答案】
(1)證明:連接OE,
∵⊙O與BC相切于點E,
∴OE⊥BC,
∵AB⊥BC,
∴AB∥OE,
∴∠2=∠AEO,
∵OA=OE,
∴∠1=∠AEO,
∴∠1=∠2,即AE平分∠CAB
(2)解:∠C=90°﹣2∠1,tanC= .
∵∠EOC是△AOE的外角,
∴∠1+∠AEO=∠EOC,
∵∠1=∠AEO,∠OEC=90°,
∴∠C=90°﹣2∠1,
當AE=CE時,∠1=∠C,
∵2∠1+∠C=90°
∴3∠C=90°,∠C=30°
∴tanC=tan30°= .
【解析】(1)連接OE,則OE⊥BC,由于AB⊥BC,故可得出AB∥OE,進而可得出∠2=∠AEO,由于OA=OE,故∠1=∠AEO,進而可得出∠1=∠2;(2)由三角形外角的性質(zhì)可知∠1+∠AEO=∠EOC,因為∠1=∠AEO,∠OEC=90°,所以2∠1+∠C=90°;當AE=CE時,∠1=∠C,再根據(jù)2∠1+∠C=90°即可得出∠C的度數(shù),由特殊角的三角函數(shù)值得出tanC即可.
【考點精析】解答此題的關鍵在于理解切線的性質(zhì)定理的相關知識,掌握切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑,以及對特殊角的三角函數(shù)值的理解,了解分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”.
科目:初中數(shù)學 來源: 題型:
【題目】將5張都是10元的紙幣隨機裝入10個完全相同的信封中,設計以下幾種抽獎游戲:
(1)游戲A:設計一個游戲,使任意抽取一個信封時,能抽到紙幣的概率為;
(2)游戲B:設計一個游戲,使任意抽取一個信封時,能抽到紙幣的概率為.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的兩邊BC,AB分別在平面直角坐標系的x軸、y軸的正半軸上,正方形A′B′C′D′與正方形ABCD是以AC的中點O′為中心的位似圖形,已知AC=3 ,若點A′的坐標為(1,2),則正方形A′B′C′D′與正方形ABCD的相似比是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)在等邊三角形ABC中,
①如圖①,D,E分別是邊AC,AB上的點且AE=CD,BD與EC交于點F,則∠BFE的度數(shù)是 度;
②如圖②,D,E分別是邊AC,BA延長線上的點且AE=CD,BD與EC的延長線交于點F,此時∠BFE的度數(shù)是 度;
(2)如圖③,在△ABC中,AC=BC,∠ACB是銳角,點O是AC邊的垂直平分線與BC的交點,點D,E分別在AC,OA的延長線上,AE=CD,BD與EC的延長線交于點F,若∠ACB=α,求∠BFE的大。ㄓ煤α的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB=AC=AD,∠CAD=60°,分別連接BC、BD,作AE平分∠BAC交BD于點E,若BE=4,ED=8,則DF=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,梯形AOBC的邊OB在x軸的正半軸上,AC∥OB,BC⊥OB,過點A的雙曲線y= 的一支在第一象限交梯形對角線OC于點D,交邊BC于點E.
(1)填空:雙曲線的另一支在第象限,k的取值范圍是;
(2)若點C的坐標為(2,2),當點E在什么位置時,陰影部分的面積S最?
(3)若 = ,S△OAC=2,求雙曲線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,∠BAC的平分線與線段BC的垂直平分線PQ相交于點P,過點P分別作PN垂直于AB于點N,PM垂直于AC于點M,BN和CM有什么數(shù)量關系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,△ABC中,AB=AC,點M、N分別是AB、AC上的點,且AM=AN.連接MN、CM、BN,點D、E、F、G分別是BC、MN、BN、CM的中點,連接E、F、D、G.
(l)判斷四邊形EFDG的形狀是 (不必證明);
(2)現(xiàn)將△AMN繞點A旋轉(zhuǎn)一定的角度,其他條件不變(如圖②),四邊形EFDG的形狀是否發(fā)生變化?證明你的結(jié)論;
(3)如圖②,在(2)的情況下,請將△ABC在原有的條件下添加一個條件,使四邊形EFDG是正方形.請寫出你添加的條件,并在添加條件的基礎上證明四邊形EFDG是正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com