【題目】在四邊形 ABCD 中,E 為 BC 邊中點.
(Ⅰ)已知:如圖,若 AE 平分∠BAD,∠AED=90°,點 F 為 AD 上一點,AF=AB.求證:(1)△ABE≌AFE;(2)AD=AB+CD
(Ⅱ)已知:如圖,若 AE 平分∠BAD,DE 平分∠ADC,∠AED=120°,點 F,G 均為 AD上的點,AF=AB,GD=CD.求證:(1)△GEF 為等邊三角形;(2)AD=AB+ BC+CD.
【答案】(Ⅰ)(1)證明見解析;(2)證明見解析;(Ⅱ)(1)證明見解析;(2)證明見解析.
【解析】
(Ⅰ)(1)運用SAS證明△ABE≌AFE即可;
(2)由(1)得出∠AEB=∠AEF,BE=EF,再證明△DEF≌△DEC(SAS),得出DF=DC,即可得出結(jié)論;
(Ⅱ)(1)同(Ⅰ)(1)得△ABE≌△AFE(SAS),△DGE≌△DCE(SAS),由全等三角形的性質(zhì)得出BE=FE,∠AEB=∠AEF,CE=GE,∠CED=∠GED,進而證明△EFG是等邊三角形;
(2)由△EFG是等邊三角形得出GF=EE=BE=BC,即可得出結(jié)論.
(Ⅰ)(1)∵AE平分∠BAD,
∴∠BAE=∠FAE,
在△ABE和△AFE中,
,
∴△ABE≌△AFE(SAS),
(2)∵△ABE≌△AFE,
∴∠AEB=∠AEF,BE=EF,
∵E為BC的中點,
∴BE=CE,
∴FE=CE,
∵∠AED=∠AEF+∠DEF=90°,
∴∠AEB+∠DEC=90°,
∴∠DEF=∠DEC,
在△DEF和△DEC中,
,
∴△DEF≌△DEC(SAS),
∴DF=DC,
∵AD=AF+DF,
∴AD=AB+CD;
(Ⅱ)(1)∵E為BC的中點,
∴BE=CE=BC,
同(Ⅰ)(1)得:△ABE≌△AFE(SAS),
△DEG≌△DEC(SAS),
∴BE=FE,∠AEB=∠AEF,CE=GE,∠CED=∠GED,
∵BE=CE,
∴FE=GE,
∵∠AED=120°,∠AEB+∠CED=180°-120°=60°,
∴∠AEF+∠GED=60°,
∴∠GEF=60°,
∴△EFG是等邊三角形,
(2)∵△EFG是等邊三角形,
∴GF=EF=BE=BC,
∵AD=AF+FG+GD,
∴AD=AB+CD+BC.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲分為三等分數(shù)字轉(zhuǎn)盤,乙為四等分數(shù)字轉(zhuǎn)盤,自由轉(zhuǎn)動轉(zhuǎn)盤.
(1)轉(zhuǎn)動甲轉(zhuǎn)盤,指針指向的數(shù)字小于3的概率是 ;
(2)同時自由轉(zhuǎn)動兩個轉(zhuǎn)盤,用列舉的方法求兩個轉(zhuǎn)盤指針指向的數(shù)字均為奇數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系中,已知點P0的坐標為(1,0),將線段OP0按照逆時針方向旋轉(zhuǎn)45°,再將其長度伸長為OP0的2倍,得到線段OP1;又將線段OP1按照逆時針方向旋轉(zhuǎn)45°,長度伸長為OP1的2倍,得到線段OP2;如此下去,得到線段OP3,OP4,…,OPn(n為正整數(shù)),則點P8的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下說法正確的有( )
①正八邊形的每個內(nèi)角都是135°;
②反比例函數(shù)y=﹣,當x<0時,y隨x的增大而增大;
③長度等于半徑的弦所對的圓周角為30°;
④分式方程的解為;
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,點A的坐標為(0,4),點B的坐標為(4,0),點C的坐標為(﹣4,0),點P在AB上,連結(jié)CP與y軸交于點D,連結(jié)BD.過P,D,B三點作⊙Q與y軸的另一個交點為E,延長DQ交⊙Q于點F,連結(jié)EF,BF.
(1)求直線AB的函數(shù)解析式;
(2)求證:∠BDE=∠ADP;
(3)設(shè)DE=x,DF=y.請求出y關(guān)于x的函數(shù)解析式;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=10,以AB為直徑作半圓O,半徑OA繞點O順時針旋轉(zhuǎn)得到OC,點A的對應(yīng)點為C,當點C與點B重合時停止.連接BC并延長到點D,使得CD=BC,過點D作DE⊥AB于點E,連接AD,AC.
(1)AD= ;
(2)如圖1,當點E與點O重合時,判斷△ABD的形狀,并說明理由;
(3)如圖2,當OE=1時,求BC的長;
(4)如圖3,若點P是線段AD上一點,連接PC,當PC與半圓O相切時,直接寫出直線PC與AD的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如果α,β都為銳角,且tanα=,tanβ=,求α+β的度數(shù).
解決:如圖①,把α,β放在正方形網(wǎng)格中,使得∠ABD=α,∠CBE=β,連結(jié)AC,易證△ABC是等腰直角三角形,因此可求得α+β=∠ABC= .
拓展:參考以上方法,解決下列問題:如果α,β都為銳角,當tanα=4,tanβ=時,
(1)在圖②的正方形網(wǎng)格中,利用已作出的銳角α,畫出∠MON=α﹣β;
(2)求出α﹣β= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形OABC的邊長為4,把它內(nèi)部及邊上的橫、縱坐標均為整數(shù)的點稱為整點,點P為拋物線的頂點(m為整數(shù)),當點P在正方形OABC內(nèi)部或邊上時,拋物線下方(包括邊界)的整點最少有( 。
A.3個B.5個C.10個D.15個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com