如圖,順次連接邊長為1的正方形ABCD四邊的中點,得到四邊形A1B1C1D1,然后順次連接四邊形A1B1C1D1的中點,得到四邊形A2B2C2D2,再順次連接四邊形A2B2C2D2四邊的中點,得到四邊形A3B3C3D3,…,按此方法得到的四邊形A8B8C8D8的周長為   

解析試題分析:順次連接正方形ABCD四邊的中點得正方形A1B1C1D1,則得正方形A1B1C1D1的面積為正方形ABCD面積的一半,即,則周長是原來的
順次連接正方形A1B1C1D1中點得正方形A2B2C2D2,則正方形A2B2C2D2的面積為正方形A1B1C1D1面積的一半,即,則周長是原來的;
順次連接正方形A2B2C2D2得正方形A3B3C3D3,則正方形A3B3C3D3的面積為正方形A2B2C2D2面積的一半,即,則周長是原來的
順次連接正方形A3B3C3D3中點得正方形A4B4C4D4,則正方形A4B4C4D4的面積為正方形A3B3C3D3面積的一半,則周長是原來的;

故第n個正方形周長是原來的,
以此類推:正方形A8B8C8D8周長是原來的
∵正方形ABCD的邊長為1,
∴周長為4,
∴按此方法得到的四邊形A8B8C8D8的周長為,
故答案為:
考點:1、中點四邊形;2、三角形的中位線的性質;3、相似圖形的面積比等于相似比的平方 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:單選題

如圖,在△ABC中,∠A=36°,AB=AC,AB的垂直平分線OD交AB于點O,交AC于點D,連接BD,下列結論錯誤的是

A.∠C=2∠A B.BD平分∠ABC
C.SBCD=SBOD D.點D為線段AC的黃金分割點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

給出兩個命題:①三角形的一個外角大于任何一個內角;②各邊對應成比例的兩個矩形一定相似(   )

A.①真②真B.①假②真C.①真②假D.①假②假

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

已知a:b=3:2,則(a-b):a=   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

如圖,直線l1∥l2∥l3,另兩條直線分別交l1、l2、l3于點A、B、C及點D、E、F,且AB=3,DE=4,DF=6,則BC=   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

已知點C是線段AB的黃金分割點,且AC>BC,AB=2,則AC的長為        .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

已知小聰?shù)纳砀邽?.8米,在太陽光下的地面影長為2.4米,若此時測得一旗桿在同一地面的影長為20米,則旗桿高應為            

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

如圖,等邊三角形ABC的邊長為3,P為BC上一點,且BP=1,D為AC上一點,若∠APD=60,則CD的長為_________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

如圖,在四邊形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,點E、F分別為AB、AD的中點,則△AEF與多邊形BCDFE的面積之比為 (  )

A.   B.   C.   D.

查看答案和解析>>

同步練習冊答案