若直線l將正方形ABCD分成面積相等的兩部分,這樣的直線可作出幾條?如何作?

答案:
解析:

無數(shù)條,過對角線交點的任一直線.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,正方形ABCD的邊長為4、點E在邊AB上,且AE=1.點F為邊CD上一動點,且DF=m,以A為原點,AB所在直線為x軸建立平面直角坐標系.
(1)連接EF,求四邊形AEFD的面積s關(guān)于m的函數(shù)關(guān)系式;
(2)若直線EF將正方形ABCD分成面積相等的兩部分:求此時直線EF對應(yīng)的函數(shù)關(guān)系式;
(3)在正方形ABCD的邊上是否存在點P,使△PCE是等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖(1),在正方形ABCD中,E是AB上一點,F(xiàn)是AD延長線上一點,且DF=BE.容易證得:CE=CF;
(1)在圖1中,若G在AD上,且∠GCE=45°.試猜想GE、BE、GD三線段之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(2)運用(1)中解答所積累的經(jīng)驗和知識,完成下面兩題:
①如圖(2),在四邊形ABCD中∠B=∠D=90°,BC=CD,點E,點G分別是AB邊,AD邊上的動點.若∠BCD=α°,∠ECG=β°,試探索當(dāng)α和β滿足什么關(guān)系時,圖(1)中GE、BE、GD三線段之間的關(guān)系仍然成立,并說明理由.
②在平面直角坐標中,邊長為1的正方形OABC的兩頂點A、C分別在y軸、x軸的正半軸上,點O在原點.現(xiàn)將正方形OABC繞O點順時針旋轉(zhuǎn),當(dāng)A點第一次落在直線y=x上時停止旋轉(zhuǎn),旋轉(zhuǎn)過程中,AB邊交直線y=x于點M,BC邊交x軸于點N(如圖(3)).設(shè)△MBN的周長為p,在旋轉(zhuǎn)正方形OABC的過程中,p值是否有變化?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•峨眉山市二模)如圖,在平面直角坐標系中,已知點B(2
2
,0)、A(m,0)(0<m<
2
),以AB為邊在x軸下方作正方形ABCD,點E是線段OD與正方形ABCD的外接圓的交點,連接BE與AD相交于點F.
(1)求證:BF=DO;
(2)若
AE
=
DE
,試求經(jīng)過B、F、O三點的拋物線l的解析式;
(3)在(2)的條件下,將拋物線l在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個新圖象,若直線BE向上平移t個單位與新圖象有兩個公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,正方形ABCD的邊長為4、點E在邊AB上,且AE=1.點F為邊CD上一動點,且DF=m,以A為原點,AB所在直線為x軸建立平面直角坐標系.
(1)連接EF,求四邊形AEFD的面積s關(guān)于m的函數(shù)關(guān)系式;
(2)若直線EF將正方形ABCD分成面積相等的兩部分:求此時直線EF對應(yīng)的函數(shù)關(guān)系式;
(3)在正方形ABCD的邊上是否存在點P,使△PCE是等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊長為4.點E在邊AB上,且AE=1.點F為邊CD上一動點,且DF=m.以A為原點,AB所在直線為x軸建立平面直角坐標系.

(1)連接EF,求四邊形AEFD的面積s關(guān)于m的函數(shù)關(guān)系式;

(2)若直線EF將正方形ABCD分成面積相等的兩部分.求此時直線EF對應(yīng)的函數(shù)關(guān)系式;

(3)在正方形ABCD的邊上是否存在點P,使△PCE是等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.(本題9分)

   

查看答案和解析>>

同步練習(xí)冊答案