【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點E,且CD=24,點M在⊙O上,MD經(jīng)過圓心O,聯(lián)結MB.
(1)若BE=8,求⊙O的半徑;
(2)若∠DMB=∠D,求線段OE的長.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠BOC=112°.將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點O逆時針旋轉至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC,問:直線ON是否平分∠AOC?請說明理由;
(2)將圖1中的三角板繞點O按每秒4°的速度沿逆時針方向旋轉一周,在旋轉的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為多少?
(3)將圖1中的三角板繞點O順時針旋轉至圖3,使ON在∠AOC的內(nèi)部,請?zhí)骄浚骸?/span>AOM與∠NOC之間的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知∠EOC=110°,將角的一邊OE繞點O旋轉,使終止位置OD和起始位置OE成一條直線,以點O為中心將OC順時針旋轉到OA,使∠COA=∠DOC,過點O作∠COA的平分線OB.
(1)借助量角器、直尺補全圖形;
(2)求∠BOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OC是∠AOB內(nèi)的一條射線,OD、OE分別平分∠AOB、∠AOC.
(1)若∠AOC=20°,∠AOB=110°,則∠BOC= °,∠DOE= °;
(2)若∠AOC=m°,∠AOB=n°(n>m),則∠BOC= °,∠DOE= °;
(3)猜想:∠DOE與∠BOC有怎樣的數(shù)量關系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在春運期間,寧波火車站加大了安檢力度,原來在北廣場執(zhí)勤的有10人,在南廣場執(zhí)勤的有6人,現(xiàn)調50人去支援.設調往北廣場x人.
(1)則南廣場增援后有執(zhí)勤多少人(用含x的代數(shù)式表示).
(2)若要使在北廣場執(zhí)勤人數(shù)是在南廣場執(zhí)勤人數(shù)的2倍,問應調往北廣場、南廣場兩處各多少人?
(3)通過適當?shù)恼{配支援人數(shù),使在北廣場執(zhí)勤人數(shù)恰好是在南廣場執(zhí)勤人數(shù)的n倍(n是大于1的正整數(shù),不包括1).求符合條件的n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,B兩地相距450千米,兩地之間有一個加油站O,且AO=270千米,一輛轎車從A地出發(fā),以每小時90千米的速度開往B地,一輛客車從B地出發(fā),以每小時60千米的速度開往A地,兩車同時出發(fā),設出發(fā)時間為t小時.
(1)經(jīng)過幾小時兩車相遇?
(2)當出發(fā)2小時時,轎車和客車分別距離加油站O多遠?
(3)經(jīng)過幾小時,兩車相距50千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中(AD>AB),點E是BC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結論中,不一定正確的是( 。
A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com