【題目】ABC中,AB=AC,點(diǎn)D在邊BC所在的直線上,過(guò)點(diǎn)D作DFAC交直線AB于點(diǎn)F,DEAB交直線AC于點(diǎn)E.

(1)當(dāng)點(diǎn)D在邊BC上時(shí),如圖①,求證:DE+DF=AC.

(2)當(dāng)點(diǎn)D在邊BC的延長(zhǎng)線上時(shí),如圖②;當(dāng)點(diǎn)D在邊BC的反向延長(zhǎng)線上時(shí),如圖③,請(qǐng)分別寫出圖②、圖③中DE,DF,AC之間的數(shù)量關(guān)系,不需要證明.

(3)若AC=6,DE=4,則DF=

【答案】(1)見(jiàn)解析;(2)AC+DF=DE.(3)2或10.

【解析】解:(1)證明:DFAC,DEAB,

四邊形AFDE是平行四邊形.

AF=DE,

DFAC,

∴∠FDB=C

AB=AC,

∴∠B=C,

∴∠FDB=B

DF=BF

DE+DF=AB=AC;

(2)圖②中:AC+DE=DF.

圖③中:AC+DF=DE.

(3)當(dāng)如圖①的情況,DF=AC﹣DE=6﹣4=2;

當(dāng)如圖②的情況,DF=AC+DE=6+4=10.

故答案是:2或10.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)你寫出一個(gè)小于﹣1的無(wú)理數(shù)__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,C=90°,AC=4cm,BC=3cm.動(dòng)點(diǎn)MN從點(diǎn)C同時(shí)出發(fā),均以每秒1cm的速度分別沿CACB向終點(diǎn)A,B移動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2cm的速度沿BA向終點(diǎn)A移動(dòng),連接PM,PN,設(shè)移動(dòng)時(shí)間為t(單位:秒,0t2.5).

1)當(dāng)t為何值時(shí),以A,P,M為頂點(diǎn)的三角形與ABC相似?

2)是否存在某一時(shí)刻t,使四邊形APNC的面積S有最小值?若存在,求S的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把一條彎曲的公路改成直道,可以縮短路程.用幾何知識(shí)解釋其道理正確的是( )

A.兩點(diǎn)確定一條直線

B.垂線段最短

C.兩點(diǎn)之間線段最短

D.三角形兩邊之和大于第三邊

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)三角形中一個(gè)內(nèi)角是另一個(gè)內(nèi)角的3倍時(shí),我們稱此三角形為“夢(mèng)想三角形”.如果一個(gè)“夢(mèng)想三角形”有一個(gè)角為108°,那么這個(gè)“夢(mèng)想三角形”的最小內(nèi)角的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程x2=4x的解

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

1-3a2ab2

2xy-5+y3-x

3)(x+2)(x-1-3xx+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD,AB=,BC=3,在BC上取兩點(diǎn)E,F(xiàn)(E在F左邊),以EF為邊作等邊三角形PEF,使頂點(diǎn)P在AD上,PE,PF分別交AC于點(diǎn)G,H.

(1)求PEF的邊長(zhǎng);

(2)在不添加輔助線的情況下,當(dāng)F與C不重合時(shí),從圖中找出一對(duì)相似三角形,并說(shuō)明理由;

(3)求證:PH﹣BE=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.以下結(jié)論:①AD∥BC;②∠ACB=2∠ADB;③;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正確的結(jié)論有_______個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案