【題目】八個邊長為1的正方形如圖擺放在平面直角坐標系中,經(jīng)過原點的一條直線l將這八個正方形分成面積相等的兩部分,則該直線l的解析式為( )

A.y=﹣x B.y=﹣x C.y=﹣x D.y=﹣x

【答案】D

【解析】

試題分析:設直線l和八個正方形的最上面交點為A,過A作ABOB于B,B過A作ACOC于C,易知OB=3,利用三角形的面積公式和已知條件求出A的坐標即可得到該直線l的解析式.

解:設直線l和八個正方形的最上面交點為A,過A作ABOB于B,B過A作ACOC于C,

正方形的邊長為1,

OB=3,

經(jīng)過原點的一條直線l將這八個正方形分成面積相等的兩部分,

SAOB=4+1=5,

OBAB=5,

AB=,

OC=,

由此可知直線l經(jīng)過(﹣,3),

設直線方程為y=kx,

則3=﹣k,

k=﹣,

直線l解析式為y=﹣x,

故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校為了增強學生對中華優(yōu)秀傳統(tǒng)文化的理解,決定購買一批相關的書籍.據(jù)了解,經(jīng)典著作的單價比傳說故事的單價多6元,用10000元購買經(jīng)典著作與用7000元購買傳說故事的本數(shù)相同,這兩類書籍的單價各是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是△ABC的角平分線,DFAB,垂足為F,DE=DG,ADG和△AED的面積分別為5038,則△EDF的面積為(

A. 6B. 12C. 4D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖: 下面是一道證明題,劉老師給同學們講解了思路,請將證明過程和每一步的理由補充完整.

已知:∠A=E,ADBE,求證:∠1=2

證明:ADBE(已知)

A=

A=E ( 已知 )

E= (等量代換)

DEAC( )

1=2( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點D為等腰直角△ABC內一點,CAD=CBD=15o,EAD延長線上的一點,CE=CA,若點MDE,DC=DM。則下列結論:①∠ADB=120°;②△ADC≌△BDC;③線段DC所在的直線垂直平分AB;④ME=BD;正確的有(

A. 1B. 4C. 2D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】[感知發(fā)現(xiàn)]:如圖,是一個“豬手”圖,ABCD,點E在兩平行線之間,連接BE,DE ,我們發(fā)現(xiàn):∠E=B+D

證明如下:過E點作EFAB

B=1(兩直線平行,內錯角相等.)

ABCD(已知)

CDEF(如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行.)

2=D(兩直線平行,內錯角相等.)

1+2=B+D(等式的性質1.)

即:∠E=B+D

[類比探究]:如圖是一個“子彈頭”圖,ABCD,點E在兩平行線之間,連接BE,DE.試探究∠E+B+D=360°.寫出證明過程.

[創(chuàng)新應用]:

(1).如圖一,是兩塊三角板按如圖所示的方式擺放,使直角頂點重合,斜邊平行,請直接寫出∠1的度數(shù).

(2).如圖二,將一個長方形ABCD按如圖的虛線剪下,使∠1=120,∠FEQ=90°. 請直接寫出∠2的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知某開發(fā)區(qū)有一塊四邊形的空地,如圖所示,現(xiàn)計劃在空地上種植草皮,經(jīng)測量,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,問要多少投入?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圖1ADBC的一張紙條,按圖1→2→3,把這一紙條先沿EF折疊并壓平,再沿BF折疊并壓平,若圖3中∠CFE=18°,則圖2中∠AEF的度數(shù)為(   )

A.120°B.108°C.126°D.114°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AMBN,∠A=80°,點P是射線AM上的動點(與A不重合),BC、BD分別平分∠ABP和∠PBN,交射線AM于點C、D

1)求∠CBD的度數(shù);

2)當點P運動時,∠APB∶∠ADB的度數(shù)比值是否隨之發(fā)生變化?若不變,請求出這個比值;若變化,請找出變化規(guī)律.

3)當點P運動到使∠ACB=ABD時,求∠ABC的度數(shù).

查看答案和解析>>

同步練習冊答案