關(guān)于四邊形ABCD:①兩組對邊分別平行②兩組對邊分別相等③有兩組角相等④對角線AC和BD相等以上四個條件中,可以判定四邊形ABCD是平行四邊形的有      (   )
A. 1個B. 2個C. 3個D. 4個
B
考點:
分析:平行四邊形的五種判定方法分別是:(1)兩組對邊分別平行的四邊形是平行四邊形;(2)兩組對邊分別相等的四邊形是平行四邊形;(3)一組對邊平行且相等的四邊形是平行四邊形;(4)兩組對角分別相等的四邊形是平行四邊形;(5)對角線互相平分的四邊形是平行四邊形.按照平行四邊形的判定方法進行判斷即可.
解答:解:①符合平行四邊形的定義,故①正確;
②兩組對邊分別相等,符合平行四邊形的判定條件,故②正確;
③兩組對角分別相等的四邊形是平行四邊形,故③錯誤;
④對角線互相平分的四邊形是平行四邊形,故④錯誤;
所以正確的結(jié)論有二個:①②,
故選B.
點評:本題考查了平行四邊形的判定,熟練掌握平行四邊形的定義和判定方法是解答此類題目的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

正方形、正方形和正方形的位置如圖所示,點在線段
上,正方形的邊長為4,則的面積為(  )
A.10  B.12C.14D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,梯形ABCD中,AB∥CD,∠DAB=90°,F(xiàn)是BC的中點,
連接DF并延長DF交AB于點E,連接AF。

小題1:(1)求證:△CDF≌△BEF;
小題2:(2)若∠E=28°,求∠AFD的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知正方形ABCD,點B與坐標(biāo)原點O重合,BC、BA分別在x軸和y軸上,對角線BD在射線OM上,點E在y軸上,OA、OE的長分別是2和6,正方形ABCD以每秒2個單位長度的速度沿射線OM(BD始終在射線OM上)方向移動,同時點P從點C以每秒1個單位長度的速度沿折線CD—DA向點A移動,當(dāng)一點到達終點時,另一點也停止移動,設(shè)移動時間為t秒
小題1:當(dāng)0≤t≤2時,直接寫出點P的坐標(biāo)(用t的代數(shù)式表示).
小題2:當(dāng)四邊形EABO是等腰梯形時,①求t的值;②求證:OA=ED
小題3:是否存在這樣的t值,使EP//x軸,若有,求出點P的坐標(biāo);若沒有,說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖, AD∥BC,BD平分∠ABC,∠A=120°,∠C=60°,AB=CD=4cm,
求四邊形ABCD的周長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若正方形的面積是2,則它的對角線長是       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

右圖是對稱中心為點的正六邊形.如果用一個含角的直角三角板的角,借助點(使角的頂點落在點處),把這個正六邊形的面積等分,那么的所有
可能的值是             

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,把一長方形紙片ABCD沿EG折疊后,點A、B分別落在A’、B’的位置上,EA’與BC相交于點F。已知,則的度數(shù)是

A、50°
B、80°
C、65°
D、40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1)在梯形ABCD中,AD∥BC,且AD=4cm,AB=6cm,BC=12cm,DC=10cm.若動點P從A點出發(fā),以每秒4cm的速度沿線段AD、DC向C點運動;動點Q從C點出發(fā)以每秒5cm的速度沿CB向B點運動. 當(dāng)Q點到達B點時,動點P、Q同時停止運動. 設(shè)點P、Q同時出發(fā),并運動了t秒.
 
小題1:求梯形ABCD的面積.
小題2:當(dāng)t為何值時,四邊形PQCD成為平行四邊形?
小題3:是否存在t,使得P點在線段DC上,且PQ⊥DC(如圖(2)所示)?若存在,求出此時t的值,若不存在,說明理由

查看答案和解析>>

同步練習(xí)冊答案