在Rt△ABC中,∠A=90°,AB=6,AC=8,點(diǎn)D為邊BC的中點(diǎn),DE⊥BC交邊AC于點(diǎn)E,點(diǎn)P為射線AB上一動(dòng)點(diǎn),點(diǎn)Q為邊AC上一動(dòng)點(diǎn),且∠PDQ=90°.

(1)求ED、EC的長(zhǎng);
(2)若BP=2,求CQ的長(zhǎng);
(3)記線段PQ與線段DE的交點(diǎn)為點(diǎn)F,若△PDF為等腰三角形,求BP的長(zhǎng).
(1),;(2)CQ或CQ;(3)

試題分析:(1)先根據(jù)勾股定理求得BC的長(zhǎng),再結(jié)合點(diǎn)D為BC的中點(diǎn)可得CD的長(zhǎng),然后證得△ABC∽△DEC,根據(jù)相似三角形的性質(zhì)即可求得結(jié)果;
(2)分①當(dāng)點(diǎn)P在AB邊上時(shí),②當(dāng)點(diǎn)P在AB的延長(zhǎng)線上時(shí),根據(jù)相似三角形的性質(zhì)求解即可;
(3)由△BPD∽△EQD可得,若設(shè)BP="x" ,則,,可得,即得∠QPD=∠C,又可證∠PDE=∠CDQ,則可得△PDF∽△CDQ,再分①當(dāng)CQ=CD時(shí),②當(dāng)QC=QD時(shí),③當(dāng)DC=DQ時(shí),三種情況,根據(jù)等腰三角形的性質(zhì)求解即可.
(1)在Rt△ABC中,∠A=90°,AB=6,AC=8 
∴BC=10
點(diǎn)D為BC的中點(diǎn)  
∴CD=5
可證△ABC∽△DEC
, 即
,;
(2)①當(dāng)點(diǎn)P在AB邊上時(shí),在Rt△ABC中,∠B+∠C=90°,
在Rt△EDC中,∠DEC+∠C=90°, 
∴∠DEC=∠B
∵DE⊥BC,∠PDQ=90° 
∴∠PDQ=∠BDE=90° 
∴∠BDP=∠EDQ
∴△BPD∽△EQD
,即,

∴CQ=EC-EQ;
②當(dāng)點(diǎn)P在AB的延長(zhǎng)線上時(shí),同理可得:,
∴CQ=EC+EQ
(3)∵線段PQ與線段DE的交點(diǎn)為點(diǎn)F,
∴點(diǎn)P在邊AB上
∵△BPD∽△EQD   

若設(shè)BP="x" ,則,,可得   
∴∠QPD=∠C
又可證∠PDE="∠CDQ"
∴△PDF∽△CDQ
∵△PDF為等腰三角形
∴△CDQ為等腰三角形
①當(dāng)CQ=CD時(shí),可得,解得
②當(dāng)QC=QD時(shí), 過(guò)點(diǎn)Q作QM⊥CB于M,
,
,解得
③當(dāng)DC=DQ時(shí),過(guò)點(diǎn)D作DN⊥CQ于N,
,
,解得(不合題意,舍去)
∴綜上所述,.
點(diǎn)評(píng):此類問(wèn)題綜合性強(qiáng),難度較大,在中考中比較常見(jiàn),一般作為壓軸題,題目比較典型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果x:y=2:3,那么下列各式不成立的是 
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,在梯形ABCD中,AD // BCABBC,點(diǎn)M在邊BC上,且∠MDB =∠ADB,

(1)求證:BM=CM
(2)作BEDM,垂足為點(diǎn)E,并交CD于點(diǎn)F
求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖①,在中,,,點(diǎn)出發(fā)沿方向向點(diǎn)勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)出發(fā)沿方向向點(diǎn)勻速運(yùn)動(dòng),速度為2cm/s;連接.若設(shè)運(yùn)動(dòng)的時(shí)間為),解答下列問(wèn)題:

(1)當(dāng)為何值時(shí),?
(2)設(shè)的面積為),求之間的函數(shù)關(guān)系式;
(3)如圖②,連接,并把沿翻折,得到四邊形,那么是否存在某一時(shí)刻,使四邊形為菱形?若存在,求出此時(shí)的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,點(diǎn)P是菱形ABCD的對(duì)角線BD上一點(diǎn), 
連結(jié)CP并延長(zhǎng),交AD于E,交BA的延長(zhǎng)線于點(diǎn)F.試問(wèn):

(1)圖中△APD與哪個(gè)三角形全等?并說(shuō)明理由.
(2)猜想:線段PC、PE、PF之間存在什么關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在Rt△ABC中,∠BAC=90°,AD⊥BC于D,AB=1,AC=2,則BD=      。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在比例尺為1∶50000的地圖上,測(cè)的A、B兩地間的圖上距離為16 cm,A、B兩地間的實(shí)際距離為               km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

把m n="p" q(mn≠0)寫成比例式,寫錯(cuò)的是
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,E是平行四邊形ABCD的邊BC的延長(zhǎng)線上的一點(diǎn),連結(jié)AE交CD于F,則圖中共有相似三角形(     )
A.1對(duì);B.2對(duì);C.3對(duì);D.4對(duì).

查看答案和解析>>

同步練習(xí)冊(cè)答案