【題目】如圖,在Rt△ABC中,∠A=30°,BC=2 ,以直角邊AC為直徑作⊙O交AB于點(diǎn)D,則圖中陰影部分的面積是( )
A. ﹣
B. ﹣
C. ﹣
D. ﹣
【答案】A
【解析】解:如圖連接OD、CD. ∵AC是直徑,
∴∠ADC=90°,
∵∠A=30°,
∴∠ACD=90°﹣∠A=60°,
∵OC=OD,
∴△OCD是等邊三角形,
∵BC是切線.
∴∠ACB=90°,∵BC=2 ,
∴AB=4 ,AC=6,
∴S陰=S△ABC﹣S△ACD﹣(S扇形OCD﹣S△OCD)
= ×6×2 ﹣ ×3×3 ﹣( ﹣ ×32)
= ﹣ π.
故選A.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用含30度角的直角三角形和扇形面積計(jì)算公式的相關(guān)知識可以得到問題的答案,需要掌握在直角三角形中,如果一個(gè)銳角等于30°,那么它所對的直角邊等于斜邊的一半;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),已知直線l1經(jīng)過原點(diǎn)O 及A(2,2 )兩點(diǎn),將直線l1向右平移4個(gè)單位后得到直線l2 , 直線l2與x 軸交于點(diǎn)B.
(1)求直線l2的函數(shù)表達(dá)式;
(2)作∠AOB 的平分線交直線l2于點(diǎn)C,連接AC.求證:四邊形OACB是菱形;
(3)設(shè)點(diǎn)P 是直線l2上一點(diǎn),以P 為圓心,PB 為半徑作⊙P,當(dāng)⊙P 與直線l1相切時(shí),請求出圓心P 點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,角平分線AD、BE、CF相交于點(diǎn)H,過H點(diǎn)作HG⊥AC,垂足為G,那么∠AHE和∠CHG的大小關(guān)系為( 。
A. ∠AHE>∠CHG B. ∠AHE<∠CHG C. ∠AHE=∠CHG D. 不一定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解家長關(guān)注孩子成長方面的狀況,學(xué)校開展了針對學(xué)生家長的“您最關(guān)心孩子哪方面成長”的主題調(diào)查,調(diào)查設(shè)置了“健康安全”、“日常學(xué)習(xí)”、“習(xí)慣養(yǎng)成”、“情感品質(zhì)”四個(gè)項(xiàng)目,并隨機(jī)抽取甲、乙兩班共100位學(xué)生家長進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果,繪制了如圖不完整的條形統(tǒng)計(jì)圖.
(1)補(bǔ)全條形統(tǒng)計(jì)圖.
(2)若全校共有3600位學(xué)生家長,據(jù)此估計(jì),有多少位家長最關(guān)心孩子“情感品質(zhì)”方面的成長?
(3)綜合以上主題調(diào)查結(jié)果,結(jié)合自身現(xiàn)狀,你更希望得到以上四個(gè)項(xiàng)目中哪方面的關(guān)注和指導(dǎo)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在長方形ABCD中,AB=10cm,BC=8cm、點(diǎn)P從A出發(fā),沿A、B、C、D路線運(yùn)動(dòng),到D停止;點(diǎn)P的速度為每秒1cm,a秒時(shí)點(diǎn)P的速度變?yōu)槊棵?/span>bcm,圖②是點(diǎn)P出發(fā)x秒后,△APD的面積S1(cm2)與x(秒)的函數(shù)關(guān)系圖象;
(1)根據(jù)圖②中提供的信息,求a、b及圖②中c的值;
(2)設(shè)點(diǎn)P離開點(diǎn)A的路程為y(cm),請寫出動(dòng)點(diǎn)P改變速度后y與出發(fā)后的運(yùn)動(dòng)時(shí)間x(秒)的函數(shù)關(guān)系式;
(3)點(diǎn)P出發(fā)后幾秒,△APD的面積S1是長方形ABCD面積的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A(-a,a)(a>0),點(diǎn)B(-a-4,a+3),C為該直角坐標(biāo)系內(nèi)的一點(diǎn),連結(jié)AB,OC.若AB∥OC且AB=OC,則點(diǎn)C的坐標(biāo)為________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各圖是在同一直角坐標(biāo)系內(nèi),二次函數(shù)y=ax2+(a+c)x+c與一次函數(shù)y=ax+c的大致圖象,有且只有一個(gè)是正確的,正確的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館有客房50間,當(dāng)每間客房每天的定價(jià)為220元時(shí),客房會(huì)全部住滿;當(dāng)每間客房每天的定價(jià)增加10元時(shí),就會(huì)有一間客房空閑,設(shè)每間客房每天的定價(jià)增加x元時(shí),客房入住數(shù)為y間.
(1)求y與x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(2)如果每間客房入住后每天的各種支出為40元,不考慮其他因素,則該賓館每間客房每天的定價(jià)為多少時(shí)利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣(2m+1)+( m2﹣1).
(1)求證:不論m取什么實(shí)數(shù),該二次函數(shù)圖象與x軸總有兩個(gè)交點(diǎn);
(2)若該二次函數(shù)圖象經(jīng)過點(diǎn)(2m﹣2,﹣2m﹣1),求該二次函數(shù)的表達(dá)式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com