如圖,小勇想估測家門前的一棵樹的高度,他站在窗戶C處,觀察到樹頂端A正好與C處在同一水平線上,小勇測得樹底B的俯角為60°,并發(fā)現(xiàn)B點距墻腳D之間恰好鋪設有六塊邊長為0.5米的正方形地磚,因此測算出B點到墻腳之間的距離為3米,請你幫助小勇算出樹的高度AB約為多少米?
(結果保留1位小數(shù);參考數(shù)據(jù):≈1.414,≈1.732)

【答案】分析:根據(jù)題意可得:在Rt△ABC中;結合銳角三角函數(shù)的定義可得AB=AC•tan60°;進而可求得樹高AB約為5.2米.
解答:解:由題意可知,AC=BD=3.
在Rt△ABC中,∠ACB=60°,AC=3,=tan60°,
∴AB=AC•tan60°
=3•
≈5.2(米).
答:樹高AB約為5.2米.
點評:本題要求學生借助俯角關系構造直角三角形,并結合圖形利用三角函數(shù)解直角三角形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,小勇想估測家門前的一棵樹的高度,他站在窗戶C處,觀察到樹頂端A正好與C處在同一水平線上,小勇測得樹底B的俯角為60°,并發(fā)現(xiàn)B點距墻腳D之間恰好鋪設有六塊邊長為0.5米的正方形地磚,因此測算出B點到墻腳之間的距離為3米,請你幫助小勇算出樹的高度AB約為多少米?
(結果保留1位小數(shù);參考數(shù)據(jù):
2
≈1.414,
3
≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源:第31章《銳角三角函數(shù)》中考題集(39):31.3 銳角三角函數(shù)的應用(解析版) 題型:解答題

如圖,小勇想估測家門前的一棵樹的高度,他站在窗戶C處,觀察到樹頂端A正好與C處在同一水平線上,小勇測得樹底B的俯角為60°,并發(fā)現(xiàn)B點距墻腳D之間恰好鋪設有六塊邊長為0.5米的正方形地磚,因此測算出B點到墻腳之間的距離為3米,請你幫助小勇算出樹的高度AB約為多少米?
(結果保留1位小數(shù);參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(07)(解析版) 題型:解答題

(2005•四川)如圖,小勇想估測家門前的一棵樹的高度,他站在窗戶C處,觀察到樹頂端A正好與C處在同一水平線上,小勇測得樹底B的俯角為60°,并發(fā)現(xiàn)B點距墻腳D之間恰好鋪設有六塊邊長為0.5米的正方形地磚,因此測算出B點到墻腳之間的距離為3米,請你幫助小勇算出樹的高度AB約為多少米?
(結果保留1位小數(shù);參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源:2005年四川省中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2005•四川)如圖,小勇想估測家門前的一棵樹的高度,他站在窗戶C處,觀察到樹頂端A正好與C處在同一水平線上,小勇測得樹底B的俯角為60°,并發(fā)現(xiàn)B點距墻腳D之間恰好鋪設有六塊邊長為0.5米的正方形地磚,因此測算出B點到墻腳之間的距離為3米,請你幫助小勇算出樹的高度AB約為多少米?
(結果保留1位小數(shù);參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

同步練習冊答案