如下圖,一正方體的棱長為3cm,把它的六個面都分成3×3個小正方形,每個小正方形的邊長為1cm,一只螞蟻每秒爬行2cm,它從下底面上的A點(AM=2cm)出發(fā),沿正方體的表面爬行.若要從A點爬到B2處,最少需要________秒鐘.

2.5
分析:正方體的側(cè)面展開是個長方形,A點的位置和B2位置確定后,根據(jù)兩點之間線段,以及勾股定理可求出解.
解答:正方體的側(cè)面展開是長方形,當長是2+2=4,寬是3時,最短路徑為:=5.
當長是3+2=5,寬是2時,最短路徑為:=
所以最短路徑為:5.
5÷2=2.5(秒).
最少需要2.5秒.
故答案為2.5秒.
點評:本題考查平面展開最短路徑問題,關(guān)鍵是知道正方體的側(cè)面展開是長方體,根據(jù)兩點之間線段最短可求出解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如下圖,一正方體的棱長為3cm,把它的六個面都分成3×3個小正方形,每個小正方形的邊長為1cm,一只螞蟻每秒爬行2cm,它從下底面上的A點(AM=2cm)出發(fā),沿正方體的表面爬行.若要從A點爬到B2處,最少需要
 
秒鐘.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

6、如下圖,一正方體截去一角后,剩下的幾何體面的個數(shù)和棱的條數(shù)分別為(  )

查看答案和解析>>

科目:初中數(shù)學 來源:山東省期中題 題型:單選題

如下圖,一正方體截去一角后,剩下的幾何體面的個數(shù)和棱的條數(shù)分別為
[     ]
A.6,14
B.7,14
C.7,15
D.6,15

查看答案和解析>>

科目:初中數(shù)學 來源:月考題 題型:填空題

.如下圖,一正方體的棱長為3cm,把它的六個面都分成3×3個小正方形,每個小正方形的邊長為1cm,一只螞蟻每秒爬行2cm,它從下底面上的A點出發(fā),沿正方體的表面爬行。若要從A點爬到B2處,最少需要(    )秒鐘。

查看答案和解析>>

同步練習冊答案