【題目】如圖1,有一張長40cm,寬30cm的長方形硬紙片,截去四個小正方形之后,折成如圖2所示的無蓋紙盒,設(shè)無蓋紙盒高為xcm.
用關(guān)于x的代數(shù)式分別表示無蓋紙盒的長和寬.
若紙盒的底面積為,求紙盒的高.
現(xiàn)根據(jù)中的紙盒,制作了一個與下底面相同大小的矩形盒蓋,并在盒蓋上設(shè)計了六個總面積為的矩形圖案如圖3所示,每個圖案的高為ycm,A圖案的寬為xcm,之后圖案的寬度依次遞增1cm,各圖案的間距、A圖案與左邊沿的間距、F圖案與右邊沿的間距均相等,且不小于,求x的取值范圍和y的最小值.
【答案】(1)長,寬,(2)高為5cm,(3)x的取值范圍為:,y的最小值為10.
【解析】
根據(jù)長兩個小正方形的長,寬兩個小正方形的寬即可得到答案,
根據(jù)面積長寬,列出關(guān)于x的一元二次方程,解之即可,
設(shè)各圖案的間距、A圖案與左邊沿的間距、F圖案與右邊沿的間距為m,關(guān)于x的一元一次不等式,解之即可,根據(jù)面積長寬,列出y關(guān)于x的反比例函數(shù),根據(jù)反比例函數(shù)的增減性求最值.
根據(jù)題意得:長,寬,
根據(jù)題意得:
整理得:
解得:舍去,,
紙盒的高為5cm,
設(shè)各圖案的間距、A圖案與左邊沿的間距、F圖案與右邊沿的間距為m,
,
,
解得:,
根據(jù)題意得:,
,
y隨著x的增大而減小,
當(dāng)取到最大值時,y取到最小值,
即當(dāng)時,,
x的取值范圍為:,y的最小值為10.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.則下列結(jié)論: ①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正確結(jié)論__________(填編號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的邊AC與⊙O相交于C,D兩點,且經(jīng)過圓心O,邊AB與⊙O相切,切點為B.如果∠A=34°,那么∠C等于( )
A.28°
B.33°
C.34°
D.56°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AC與BD相交于點O,E為OD的中點,連接AE并延長交DC于點F,則S△DEF:S△AOB的值為( )
A.1:3
B.1:5
C.1:6
D.1:11
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,BC=3,點E為射線BC上一動點,將△ABE沿AE折疊,得到△AB′E.若B′恰好落在射線CD上,則BE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖已知∠1=∠2,∠BAD=∠BCD,則下列結(jié)論:①AB∥CD,②AD∥BC,③∠B=∠D,④∠D=∠ACB,正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1+∠2=180°,∠B=∠D.說明AB∥CD的理由.
補(bǔ)全下面的說理過程,并在括號內(nèi)填上適當(dāng)?shù)睦碛?/span>
解:∵∠1+∠2=180°(已知)
∠2=∠AHB( )
∴ (等量代換)
∴DE∥BF( )
∴∠D=∠ ( )
∵∠ =∠B(等量代換)
∴AB∥CD( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,正方形ABCD中,,繞點A順時針旋轉(zhuǎn),它的兩邊長分別交CB、DC或它們的延長線于點MN,于點H.
如圖,當(dāng)點A旋轉(zhuǎn)到時,請你直接寫出AH與AB的數(shù)量關(guān)系;
如圖,當(dāng)繞點A旋轉(zhuǎn)到時,中發(fā)現(xiàn)的AH與AB的數(shù)量關(guān)系還成立嗎?如果不成立請寫出理由,如果成立請證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點A、C分別在x軸和y軸上,點B的坐標(biāo)為(2,3).雙曲線y= (x>0)的圖象經(jīng)過BC的中點D,且與AB交于點E,連接DE.
(1)求k的值及點E的坐標(biāo);
(2)若點F是OC邊上一點,且△FBC∽△DEB,求直線FB的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com