已知:如圖,B、C是線段AD上兩點,且AB:BC:CD=2:4:3,M是AD的中點,BM=15cm,求線段MC的長.

解:設AB=2xcm,BC=4xcm,CD=3xcm
所以AD=AB+BC+CD=9xcm
因為M是AD的中點
所以AM=MD=AD=4.5xcm
所以BM=AM-AB=4.5x-2x=2.5xcm
因為BM=15cm,
所以2.5x=15,x=6
故CM=MD-CD=4.5x-3x=1.5x=1.5×6=9cm
分析:由已知B,C兩點把線段AD分成2:4:3三部分,所以設AB=2xcm,BC=4xcm,CD=3xcm,根據(jù)已知分別用x表示出AD,MD,從而得出BM,繼而求出x,則求出CM的長.
點評:本題考查了兩點間的距離,利用中點性質(zhì)轉(zhuǎn)化線段之間的倍分關(guān)系是解題的關(guān)鍵,在不同的情況下靈活選用它的不同表示方法,有利于解題的簡潔性.同時,靈活運用線段的和、差、倍、分轉(zhuǎn)化線段之間的數(shù)量關(guān)系也是十分關(guān)鍵的一點.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,AB、CD是⊙O的兩條互相垂直的弦,E為垂足,P是CD延長線上的一點,PA精英家教網(wǎng)交⊙O于F,GF切⊙O于F且與CP交于G,CH切⊙O于C且與AB的延長線交于H,如果GP2=GD•GC,AD平分∠BAP并交HP于M.
求證:(1)AB為⊙O的直徑;
(2)MH=MP;
(3)
AH
AB
=
AE
AF
(證明過程中最好用數(shù)字表示角).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、已知:如圖,E、F是四邊形ABCD的對角線AC上的兩點,AF=CE,DF=BE,DF∥BE.
求證:AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,B、C是線段AD上兩點,且AB:BC:CD=2:4:3,M是AD的中點,CD=6cm,求線段MC的長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖正方形ABCD,E是BC的中點,F(xiàn)在AB上,且BF=
14
AB,猜想EF與DE的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,A、C是?DEBF的對角線EF所在直線上的兩點,且AE=CF.
求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

同步練習冊答案