【題目】如圖,已知DE∥BC,∠3=∠B,則∠1+∠2=180°.下面是王寧同學的思考過程,請你在括號內(nèi)填上理由、依據(jù)或內(nèi)容。
思考過程
因為 DE∥BC(已知)
所以∠3=∠EHC ( )
因為∠3=∠B(已知)
所以∠B=∠EHC ( )
所以 AB∥EH ( )
∠2+ ( )=180°( )
因為∠1=∠4( )
所以∠1+∠2=180°(等量代換)
科目:初中數(shù)學 來源: 題型:
【題目】某市為提倡節(jié)約用水,準備實行自來水“階梯計費”方式,用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實行加價收費,為更好地做決策,自來水公司隨機抽取部分用戶的用水量數(shù)據(jù),并繪制了如圖不完整的統(tǒng)計圖(每組數(shù)據(jù)包括最大值但不包括最小值),請你根據(jù)統(tǒng)計圖解決下列問題:
(1)此次抽樣調(diào)查的樣本容量是
(2)補全左側(cè)統(tǒng)計圖,并求扇形統(tǒng)計圖中“25噸~30噸”部分的圓心角度數(shù).
(3)如果自來水公司將基本用水量定為每戶25噸,那么該地區(qū)6萬用戶中約有多少用戶的用水全部享受基本價格?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:線段
求作:菱形,使得且.
以下是小丁同學的作法:
①作線段;
②分別以點,為圓心,線段的長為半徑作弧,兩弧交于點;
③再分別以點,為圓心,線段的長為半徑作弧,兩弧交于點;
④連接,,.
則四邊形即為所求作的菱形.(如圖)
老師說小丁同學的作圖正確.則小丁同學的作圖依據(jù)是:_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】P是三角形ABC內(nèi)一點,射線PD∥AC,射線PE∥AB.
(1)當點D,E分別在AB,BC上時,
①補全圖1;
②猜想∠DPE與∠A的數(shù)量關(guān)系,并證明;
(2)當點D,E都在線段BC上時,你在(1)中所得結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了貫徹落實國家關(guān)于增強青少年體質(zhì)的計劃,我市全面實施了義務(wù)教育學段中小學學生“飲用奶計劃”的營養(yǎng)工程.某牛奶供應(yīng)商擬提供A(原味)、B(草莓味)、C(核桃味)、D(菠蘿味)、E(香橙味)等五種口味的學生奶供學生選擇(所有學生奶盒形狀、大小相同),為了解對學生奶口味的喜好情況,某初級中學九年級(1)班張老師對全班同學進行了調(diào)查統(tǒng)計,制成了如圖所示的兩幅不完整的統(tǒng)計圖.
(1)該班共有多少人?
(2)求出喜好A和E學生奶口味的人數(shù);
(3)該班五種口味的學生奶喜好人數(shù)組成一組統(tǒng)計數(shù)據(jù),求出這組數(shù)據(jù)的平均數(shù);
(4)將折線統(tǒng)計圖補充完整.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為增加體育館觀眾坐席數(shù)量,決定對體育館進行施工改造.如圖,為體育館改造的截面示意圖.已知原座位區(qū)最高點A到地面的鉛直高度AC長度為15米,原坡面AB的傾斜角∠ABC為45°,原坡腳B與場館中央的運動區(qū)邊界的安全距離BD為5米.如果按照施工方提供的設(shè)計方案施工,新座位區(qū)最高點E到地面的鉛直高度EG長度保持15米不變,使A、E兩點間距離為2米,使改造后坡面EF的傾斜角∠EFG為37°.若學校要求新坡腳F需與場館中央的運動區(qū)邊界的安全距離FD至少保持2.5米(即FD≥2.5),請問施工方提供的設(shè)計方案是否滿足安全要求呢?請說明理由.(參考數(shù)據(jù):sin37°≈,tan37°≈)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,△ABC為直角三角形,∠ACB=90°,AB=5 cm,BC=3 cm,AC=4 cm,△ABC繞點C按逆時針方向旋轉(zhuǎn)90°后得到△DEC,則∠D=______,∠B=________,DE=________cm,CE=______cm,AE=________cm,DB=________cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面的文字,解答問題:大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,但是由于1<<2,所以的整數(shù)部分為1,將減去其整數(shù)部分1,差就是小數(shù)部分,根據(jù)以上的內(nèi)容,解答下面的問題:
(1)的整數(shù)部分是______,小數(shù)部分是______;
(2)的整數(shù)部分是______,小數(shù)部分是_____;
(3)若設(shè)整數(shù)部分是x,小數(shù)部分是y,求x﹣y的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個裝有進水管和出水管的容器,根據(jù)實際需要,從某時刻開始的2分鐘內(nèi)只進水不出水,在隨后的4分鐘內(nèi)既進水又出水,接著關(guān)閉進水管直到容器內(nèi)的水放完.假設(shè)每分鐘的進水量和出水量是兩個常數(shù),容器內(nèi)的水量y(單位:升)與時間x(單位:分鐘)之間的部分關(guān)系如圖所示.
(1)當2≤x≤6時,求y與x的表達式;
(2)請將圖象補充完整;
(3)從進水管開始進水起,求該容器內(nèi)的水量不少于7.5升所持續(xù)時間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com