【題目】如圖,正方形ABCD是一塊綠化帶,其中陰影部分EOFB,GHMN都是正方形的花圃.已知自由飛翔的小鳥,將隨機落在這塊綠化帶上,則小鳥不落在花圃上的概率為( 。
A.B.C.D.
【答案】A
【解析】
設正方形ABCD的邊長為a,根據(jù)正方形的性質(zhì)∠ACB=∠ACD=45°,AC=a,再利用四邊形BEOF為正方形易得CF=OF=BF=a,則S正方形BEOF=a2,設正方形MNGH的邊長為x,易得CM=AN=MN=x,即3x=a,解得x=x,則S正方形MNGH=a2,然后根據(jù)幾何概率的意義,用兩個小正方形的面積和除以正方形ABCD的面積即可得到小鳥落在花圃上的概率,從而得到小鳥不落在花圃上的概率.
解:設正方形ABCD的邊長為a,
∵四邊形ABCD為正方形,
∴∠ACB=∠ACD=45°,AC=a,
∵四邊形BEOF為正方形,
∴CF=OF=BF,
∴S正方形BEOF=(a)2=a2,
設正方形MNGH的邊長為x,
∵△ANG和△CMH都是等腰直角三角形,
∴CM=AN=MN=x,
∴3x=a,解得x=a,
∴S正方形MNGH==a2,
∴小鳥不落在花圃上的概率=1﹣=
故選:A.
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩名同學做摸球游戲,他們把三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中.
(1)求從袋中隨機摸出一球,標號是1的概率;
(2)從袋中隨機摸出一球后放回,搖勻后再隨機摸出一球,若兩次摸出的球的標號之和為偶數(shù)時,則甲勝;若兩次摸出的球的標號之和為奇數(shù)時,則乙勝;試分析這個游戲是否公平?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0).下列結(jié)論:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤當x>﹣1時,y>0,其中正確結(jié)論的個數(shù)是
A.5個 B.4個 C.3個 D.2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2-4x-3,下列說法中正確的是( )
A.該函數(shù)圖象的開口向下B.該函數(shù)圖象的頂點坐標是(-2,-7)
C.當x<0時,y隨x的增大而增大D.該函數(shù)圖象與x軸有兩個不同的交點,且分布在坐標原點兩側(cè)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,BD是半圓O的直徑,A是BD延長線上的一點,BC⊥AE,交AE的延長線于點C,交半圓O于點F,且E為弧DF的中點.
(1)求證:AC是半圓O的切線;
(2)若BC=8,BE=6,求半徑的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某球室有三種品牌的個乒乓球,價格是7,8,9(單位:元)三種.從中隨機拿出一個球,已知(一次拿到元球).
(1)求這個球價格的眾數(shù);
(2)若甲組已拿走一個元球訓練,乙組準備從剩余個球中隨機拿一個訓練.
①所剩的個球價格的中位數(shù)與原來個球價格的中位數(shù)是否相同?并簡要說明理由;
②乙組先隨機拿出一個球后放回,之后又隨機拿一個,用列表法(如圖)求乙組兩次都拿到8元球的概率.
又拿 先拿 | |||
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=x2+(m+1)x﹣m﹣2(m>0)與x軸交于A、B兩點,與y軸交于點C,不論m取何正數(shù),經(jīng)過A、B、C三點的⊙P恒過y軸上的一個定點,則該定點的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與軸交于點,與軸交于點,拋物線與直線交于,兩點,點是拋物線的頂點.
(1)求拋物線的解析式;
(2)點是直線上方拋物線上的一個動點,其橫坐標為,過點作軸的垂線,交直線于點,當線段的長度最大時,求的值及的最大值.
(3)在拋物線上是否存在異于、的點,使中邊上的高為,若存在求出點的坐標;若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的一條弦,點C是⊙O上一動點,且∠ACB=30°,點E、F分別是AC、BC的中點,直線EF與⊙O交于G、H兩點,若⊙O的半徑為8,則GE+FH的最大值為( )
A.8B.12C.16D.20
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com