【題目】請用兩種不同的方法,在下圖所給的兩個矩形中各畫一個不為正方形的菱形,且菱形的四個頂點都在矩形的邊上(尺規(guī)作圖,保留作圖痕跡),并說明思路.

【答案】見解析

【解析】

作矩形A1B1C1D1四條邊的中點E1F1,G1,H1;連接H1E1,E1F1,G1F1,G1H1.四邊形E1F1G1H1即為菱形;
還可以在B2C2上取一點E2,使E2C2A2E2E2不與B2重合;以A2為圓心,A2E2為半徑畫弧,交A2D2H2;以E2為圓心,A2E2為半徑畫弧,交B2C2F2;連接H2F2,則四邊形A2E2F2H2為菱形.

如圖:

圖①的作法:
作矩形A1B1C1D1四條邊的中點E1,F1G1,H1
連接H1E1,E1F1G1F1,G1H1
四邊形E1F1G1H1即為菱形.
圖②的作法:
B2C2上取一點E2,使E2C2A2E2E2不與B2重合;
A2為圓心,A2E2為半徑畫弧,交A2D2H2;
E2為圓心,A2E2為半徑畫弧,交B2C2F2
連接H2F2,則四邊形A2E2F2H2為菱形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把等邊三角形沿著折疊,使點恰好落在邊上的點處,且。若,則______.(在直角三角形中,角所對的直角邊等于斜邊的一半。)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】年南寧市地鐵號線二期工程建設如火如荼.預計年底投入運營,從此省城南寧市將進入立體大交通新時代.甲、乙兩個工程隊計劃參與其中的一項工程建設,甲隊單獨施工天完成該項工程的,這時乙隊加入,兩隊還需同時施工天才能完成該項工程.

若乙隊單獨施工,需要多少天才能完成該項工程?

若甲隊參與該項工程施工的時間不超過天,則乙隊至少施工多少天才能完成該項工程?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(閱讀)如圖1,四邊形OABC中,OA=a,OC=3,BC=2,

∠AOC=∠BCO=90°,經(jīng)過點O的直線l將四邊形分成兩部分,直線lOC所成的角設為θ,將四邊形OABC的直角∠OCB沿直線l折疊,點C落在點D處,我們把這個操作過程記為FZ[θ,a].

(理解)

若點D與點A重合,則這個操作過程為FZ[45°,3];

(嘗試)

(1)若點D恰為AB的中點(如圖2),求θ;

(2)經(jīng)過FZ[45°,a]操作,點B落在點E處,若點E在四邊形OABC的邊AB上,求出a的值;若點E落在四邊形OABC的外部,直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,EBC上一點,AF平分∠DAE,求證:BE+DF=AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點EDBC的邊DB上,點ADBC內(nèi)部,∠DAE=BAC=90°,AD=AE,AB=AC.給出下列結(jié)論:

BD=CE;②∠ABD+ECB=45°;BDCE;BE2=2(AD2+AB2)﹣CD2.其中正確的是( 。

A. ①②③④ B. ②④ C. ①②③ D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)道路管理規(guī)定,在賀州某段筆直公路上行駛的車輛,限速千米/時,已知交警測速點到該公路點的距離為米,,(如圖所示),現(xiàn)有一輛汽車由方向勻速行駛,測得此車從點行駛到點所用的時間為秒.

求測速點到該公路的距離;

通過計算判斷此車是否超速.(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖,下列結(jié)論:①;;;;,正確的個數(shù)是( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)ymx2m+3的圖像與y=-x的圖像交于點C,且點C的橫坐標為-3,與x軸、y軸分別交于點A、點B

1)求m的值與AB的長;

2)若點D90),連結(jié)BD,求證△ABD為直角三角形.

3)在y軸上是否存在點P,使得△ABP為等腰三角形,若存在請求出P的坐標,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案