已知:二次函數(shù)y=
1
2
x2-x-
3
2

(1)把這個二次函數(shù)表示成y=a(x-h)2+k的形式;
(2)寫出拋物線y=
1
2
x2-x-
3
2
的頂點坐標(biāo)和對稱軸,并說明該拋物線是由哪一條形如y=ax2的拋物線經(jīng)過怎樣的變換得到的;
(3)試求出拋物線y=
1
2
x2-x-
3
2
與x軸的交點坐標(biāo);
(4)請直接回答:當(dāng)x為何值時,代數(shù)式y=
1
2
x2-x-
3
2
的值是負(fù)數(shù).
分析:(1)用配方法將二次函數(shù)化為頂點式的形式即可;
(2)y=a(x-h)2+k的對稱軸為x=h,頂點為(h,k),y=a(x-h)2+k是由y=ax2先向右平移|h|個單位長度,再向上平y(tǒng)移|k|個單位長度而得到的;
(3)令y=0即可得出拋物線y=
1
2
x2-x-
3
2
與x軸的交點坐標(biāo);
(4)由圖象可知,當(dāng)x在兩個交點之間時,y<0.
解答:解:(1)y=
1
2
(x2-2x)-
3
2
,
y=
1
2
(x2-2x+1-1)-
3
2

y=
1
2
(x-1)2-2;

(2)∵y=
1
2
x2-x-
3
2
=
1
2
(x-1)2-2,
∴拋物線y=
1
2
x2-x-
3
2
的頂點坐標(biāo)(1,-2)和對稱軸x=1,
拋物線y=
1
2
(x-1)2-2是拋物線y=
1
2
x2先向右平移1個單位長度,再向上平y(tǒng)移左2個單位長度而得到的;

(3)令y=0,則
1
2
(x-1)2-2=0,解得x=-1或3,
∴與x軸的交點坐標(biāo)(-1,0),(3,0);

(4)當(dāng)-1<x<3時,y<0.
點評:本題考查了二次函數(shù)與x軸的交點問題,拋物線的平移以及配方法,是基礎(chǔ)知識要熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:二次函數(shù)的表達(dá)式為y=2x2+4x-1.
(1)設(shè)這個函數(shù)圖象的頂點坐標(biāo)為P,與y軸的交點為A,求P、A兩點的坐標(biāo);
(2)將二次函數(shù)的圖象向上平移1個單位,設(shè)平移后的圖象與x軸的交點為B、C(其中點B在點C的左側(cè)),求B、C兩點的坐標(biāo)及tan∠APB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,與y軸交于點C,其中點A的坐標(biāo)是(-2,0),點B在x軸的正半軸上,點C在y軸的正半軸上,線段OB、OC的長(OC<OB)是方程x2-10x+24=0的兩個根.
(1)求B、C兩點的坐標(biāo);
(2)求這個二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:二次函數(shù)y=x2-2(m-1)x-1-m的圖象與x軸交于A(x1,0)、B(x2,0),x1<0<x2,與y軸交于點C,且滿足
1
AO
-
1
OB
=
2
CO

(1)求這個二次函數(shù)的解析式;
(2)是否存在著直線y=kx+b與拋物線交于點P、Q,使y軸平分△CPQ的面積?若存在,求出k、b應(yīng)滿足的條件;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點,其中A點坐標(biāo)為(-3,0),與y軸精英家教網(wǎng)交于點C,點D(-2,-3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對稱軸上有一動點P,求出PA+PD的最小值;
(3)點G拋物線上的動點,在x軸上是否存在點E,使B、D、E、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的E點坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:二次函數(shù)y=ax2+bx+c(a≠0)中的x和y滿足下表:
x 0 1 2 3 4 5
y 3 0 -1 0 m 8
(1)可求得m的值為
3
3

(2)求出這個二次函數(shù)的解析式;
(3)當(dāng)0<x<3時,則y的取值范圍為
-1≤y<3
-1≤y<3

查看答案和解析>>

同步練習(xí)冊答案