【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在x、y軸的正半軸上,點(diǎn)D為對(duì)角線OB的中點(diǎn),反比例函數(shù))在第一象限內(nèi)的圖象經(jīng)過(guò)點(diǎn)D,且與ABBC分別交于E、F兩點(diǎn),若四邊形BEDF的面積為4.5,則的值為

【答案】k=3

【解析】

試題連接OF,EO

點(diǎn)D為對(duì)角線OB的中點(diǎn),四邊形BEDF的面積為4.5∴SBDF=SODF,SBDE=SODE,

四邊形FOED的面積為9,由題意得:E、M、D位于反比例函數(shù)圖象上,則SOCF=SOAE=,

過(guò)點(diǎn)DDG⊥y軸于點(diǎn)G,作DN⊥x軸于點(diǎn)N,則S□ONDG=k,又∵D為矩形ABCO對(duì)角線的交點(diǎn),則S矩形ABCO=4S□ONDG=4k,由于函數(shù)圖象在第一象限,k0,則++9=4k,解得:k= 3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1是邊長(zhǎng)分別為43的兩個(gè)等邊三角形紙片ABCCDE疊放在一起(CC重合).

(1)操作:固定ABC,將CDE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)30°得到CDE,連接AD、BE,CE的延長(zhǎng)線交ABF(圖2);

探究:在圖2中,線段BEAD之間有怎樣的大小關(guān)系?試證明你的結(jié)論.

(2)操作:將圖2中的CDE,在線段CF上沿著CF方向以每秒1個(gè)單位的速度平移,平移后的CDE設(shè)為PQR(圖3);

請(qǐng)問(wèn):經(jīng)過(guò)多少時(shí)間,PQRABC重疊部分的面積恰好等于?

(3)操作:圖1CDE固定,將ABC移動(dòng),使頂點(diǎn)C落在CE的中點(diǎn),邊BCDE于點(diǎn)M,邊ACDC于點(diǎn)N,設(shè)∠AC C′=α(30°<α<90,圖4);

探究:在圖4中,線段CNEM的值是否隨α的變化而變化?如果沒(méi)有變化,請(qǐng)你求出CNEM的值,如果有變化,請(qǐng)你說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:mn是方程x2﹣6x+5=0的兩個(gè)實(shí)數(shù)根,且mn,拋物線y=﹣x2+bx+c的圖象經(jīng)過(guò)點(diǎn)Am,0),B(0,n).

(1)求這個(gè)拋物線的解析式;

(2)設(shè)(1)中的拋物線與x軸的另一交點(diǎn)為C,拋物線的頂點(diǎn)為D,試求出點(diǎn)C,D的坐標(biāo)和△BCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AM為⊙O的切線,A為切點(diǎn).過(guò)⊙O上一點(diǎn)B作BD⊥AM于點(diǎn)D,BD交⊙O于點(diǎn)C,OC平分∠AOB.

(1)求∠AOB的度數(shù);

(2)當(dāng)⊙O的半徑為4cm時(shí),求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與y軸交于C點(diǎn),過(guò)點(diǎn)A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點(diǎn)B的坐標(biāo)為(m,-2).

(1)求△AHO的周長(zhǎng);

(2)求該反比例函數(shù)和一次函數(shù)的解析式.

【答案】(1)△AHO的周長(zhǎng)為12;(2) 反比例函數(shù)的解析式為y=,一次函數(shù)的解析式為y=-x+1.

【解析】試題分析: 1)根據(jù)正切函數(shù),可得AH的長(zhǎng),根據(jù)勾股定理,可得AO的長(zhǎng),根據(jù)三角形的周長(zhǎng),可得答案;

2)根據(jù)待定系數(shù)法,可得函數(shù)解析式.

試題解析:(1)由OH=3,tan∠AOH=,得

AH=4.即A-4,3).

由勾股定理,得

AO==5

△AHO的周長(zhǎng)=AO+AH+OH=3+4+5=12;

2)將A點(diǎn)坐標(biāo)代入y=k≠0),得

k=-4×3=-12

反比例函數(shù)的解析式為y=;

當(dāng)y=-2時(shí),-2=,解得x=6,即B6,-2).

AB點(diǎn)坐標(biāo)代入y=ax+b,得

,

解得,

一次函數(shù)的解析式為y=-x+1

考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題.

型】解答
結(jié)束】
21

【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點(diǎn),∠ABD=2∠BAC,過(guò)點(diǎn)C作CE⊥DB交DB的延長(zhǎng)線于點(diǎn)E,直線AB與CE相交于點(diǎn)F.

(1)求證:CF為⊙O的切線;

(2)填空:當(dāng)∠CAB的度數(shù)為________時(shí),四邊形ACFD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店經(jīng)銷(xiāo)一種雙肩包,已知這種雙肩包的成本價(jià)為每個(gè)30元.市場(chǎng)調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷(xiāo)售量y(單位:個(gè))與銷(xiāo)售單價(jià)x(單位:元)有如下關(guān)系:y=-x+60(30≤x≤60).

設(shè)這種雙肩包每天的銷(xiāo)售利潤(rùn)為w元.

(1)求w與x之間的函數(shù)解析式;

(2)這種雙肩包銷(xiāo)售單價(jià)定為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少元?

(3)如果物價(jià)部門(mén)規(guī)定這種雙肩包的銷(xiāo)售單價(jià)不高于48元,該商店銷(xiāo)售這種雙肩包每天要獲得200元的銷(xiāo)售利潤(rùn),銷(xiāo)售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在大課間活動(dòng)中,同學(xué)們積極參加體育鍛煉,小段同學(xué)就本班同學(xué)“我最擅長(zhǎng)的體育項(xiàng)目”進(jìn)行了一次調(diào)查統(tǒng)計(jì),下面是她通過(guò)收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中提供的信息,解答以下問(wèn)題:

(1)該班共有 名學(xué)生;補(bǔ)全條形統(tǒng)計(jì)圖;在扇形統(tǒng)計(jì)圖中,“其他”部分所對(duì)應(yīng)的圓心角度數(shù)為 度.

(2)學(xué)校將舉辦冬季運(yùn)動(dòng)會(huì),該班已推選5位同學(xué)參加乒乓球活動(dòng),其中有2位男同學(xué)(、)和3位女同學(xué)(、),現(xiàn)從中選取兩名同學(xué)組成雙打組合,用樹(shù)狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長(zhǎng)線上的點(diǎn),且DE=BF,連接AE、AF、EF.

(1)求證:ADE≌△ABF;

(2)填空:ABF可以由ADE繞旋轉(zhuǎn)中心    點(diǎn),按順時(shí)針?lè)较蛐D(zhuǎn)    度得到;

(3)若BC=8,DE=6,求AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A在反比例函數(shù)y=圖象的第一象限的那一支上,AB垂直于y軸于點(diǎn)B,點(diǎn)C在x軸正半軸上,且OC=2AB,點(diǎn)E在線段AC上,且EC=AC,點(diǎn)D為OB的中點(diǎn),若ADE的面積為5,則k的值為( 。

A. B. 10 C. D. 12

查看答案和解析>>

同步練習(xí)冊(cè)答案