如圖,AB是⊙O的直徑,AD、BD是半圓的弦,且∠PDA=∠PBD.

(1)求證:PD是⊙O的切線;
(2)如果∠BDE=60°,PD=,求PA的長.
(1)連接OD,先根據(jù)圓的基本性質(zhì)可得∠ADO=∠PBD,再由∠PDA=∠PBD可得∠PBD=∠BDO,根據(jù)圓周角定理可得∠ADB=90°即∠ADO+∠BDO=90°,即可證得結(jié)論;(2)1

試題分析:(1)連接OD,先根據(jù)圓的基本性質(zhì)可得∠ADO=∠PBD,再由∠PDA=∠PBD可得∠PBD=∠BDO,根據(jù)圓周角定理可得∠ADB=90°即∠ADO+∠BDO=90°,即可證得結(jié)論;
(2)先證得△AOD是等邊三角形,即可得到∠P=30°,根據(jù)含30度角的直角三角形的性質(zhì)可得PD=2DO,在Rt△POD中,設(shè)OD=AO=x,根據(jù)勾股定理即可列方程求得x的值,從而得到結(jié)果.
(1)連接OD,

∵OB=OD,
∴∠ADO=∠PBD.
又∵∠PDA=∠PBD,
∴∠PBD=∠BDO.
又∵AB是⊙O直徑,
∴∠ADB=90°即∠ADO+∠BDO=90°,
∴∠ADO+∠PDA=90°即OD⊥PD
∴PD是⊙O的切線. 
(2)∵∠BDE=60°,∠ODE=90°,
∴∠BDO=30°,
∵∠ADO+∠BDO=90°,
∴∠ADO=60°.
∴△AOD是等邊三角形
∴∠POD=60°,
∵OD⊥PD,
∴∠P=30°,
∴PD=2DO.
在Rt△POD中,設(shè)OD=AO=x,則,
,解得,(不合題意,舍去),
∴AO=1,PO=2,
∴PA=PO-AO=1.
點評:此類問題知識點較多,綜合性較強,是中考常見題,一般難度不大.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:在△ABC中,AB=6,BC=8,AC=10,O為AB邊上的一點,以O(shè)為圓心,OA長為半徑作圓交AC于D點,過D作⊙O的切線交BC于E.

(1)若O為AB的中點(如圖1),則ED與EC的大小關(guān)系為:ED   EC(填“”“”或“”)
(2)若OA<3時(如圖2),(1)中的關(guān)系是否還成立?為什么?
(3)當⊙O過BC中點時(如圖3),求CE長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)如圖1,OA、OB是⊙O的半徑,且OAOB,點COB延長線上任意一點,過點CCD切⊙O于點D,連結(jié)ADDC于點E.則CD=CE嗎?如成立,試說明理由。
(2)若將圖中的半徑OB所在直線向上平行移動交OAF,交⊙OB’,其他條件不變,如圖2,那么上述結(jié)論CD=CE還成立嗎?為什么?
(3)若將圖中的半徑OB所在直線向上平行移動到⊙O外的CF,點EDA的延長線與CF的交點,其他條件不變,如圖3,那么上述結(jié)論CD=CE還成立嗎?為什么

圖 1                 圖 2             圖 3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在⊙O中,AB是直徑,AD是弦,∠ADE=60°,∠C=30°.

(1)判斷直線CD是否為⊙O的切線,請說明理由;
(2)若CD="3" ,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,以點O為圓心的兩個同心圓,半徑分別為5和3,若大圓的弦AB與小圓相交,則弦長AB的取值范圍是(    )
A.8≤AB≤10B.AB≥8
C.8<AB<10D.8<AB≤10

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知Rt△ABC,直角邊AC、BC的長分別為3cm和4cm,以AC邊所在的直線為軸將△ABC旋轉(zhuǎn)一周,則所圍成的幾何體的側(cè)面積是      .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

選做題:從甲乙兩題中選作一題,如果兩題都做,只以甲題計分
題甲:已知矩形兩鄰邊的長是方程的兩根.
(1)求的取值范圍;
(2)當矩形的對角線長為時,求的值;
(3)當為何值時,矩形變?yōu)檎叫危?br />
題乙:如圖,直徑,于點,交
,且
(1)判斷直線的位置關(guān)系,并給出證明;
(2)當,時,求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB⊥CD,∠BAD=300,則∠AEC的度數(shù)等于(       )
A.30°B.50°C.60°D.70°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△ABC內(nèi)接于⊙O,AD為⊙O的直徑,交BC于點E,若DE=2,OE=3,則tanC·tanB=( 。
A.2B.3C.4D.5

查看答案和解析>>

同步練習冊答案