如圖,已知點(diǎn)C是以AB為直徑的⊙O上一點(diǎn),CH⊥AB于點(diǎn)H,過點(diǎn)B作⊙O 的切線交直線AC于點(diǎn)D,點(diǎn)E為CH的中點(diǎn),連結(jié)并延交BD于點(diǎn)F,直線CF交AB的延長線于G.
⑴求證:AE·FD=AF·EC;
⑵求證:FC=FB;
⑶若FB=FE=2,求⊙O 的半徑r的長.
(1)證明:∵BD是⊙O的切線,∴∠DBA=90°。
∵CH⊥AB,∴CH∥BD�!唷鰽EC∽△AFD。
∴�!郃E•FD=AF•EC。
(2)證明:∵CH∥BD,∴△AEC∽△AFD,△AHE∽△ABF�!�。
∵CE=EH(E為CH中點(diǎn)),∴BF=DF。
∵AB為⊙O的直徑,∴∠ACB=∠DCB=90°�!郈F=DF=BF,即CF=BF。
(3)解:∵BF=CF=DF(已證),EF=BF=2,∴EF=FC。∴∠FCE=∠FEC。
∵∠AHE=∠CHG=90°,∴∠FAH+∠AEH=90°,∠G+∠GCH=90°。
∵∠AEH=∠CEF,∴∠G=∠FAG�!郃F=FG。
∵FB⊥AG,∴AB=BG。
連接OC,BC,
∵BF切⊙O于B,∴∠FBC=∠CAB。
∵OC=OA,CF=BF,
∴∠FCB=∠FBC,∠OCA=∠OAC
∴∠FCB=∠CAB。
∵∠ACB=90°,∴∠ACO+∠BCO=90°�!唷螰CB+∠BCO=90°,即OC⊥CG。
∴CG是⊙O切線。
∵GBA是⊙O割線,F(xiàn)B=FE=2,由切割線定理得:(2+FG)2=BG×AG=2BG2,
【注,沒學(xué)切割線定理的可由△AGC∽△CGB求得】
在Rt△BFG中,由勾股定理得:BG2=FG2﹣BF2,∴FG2﹣4FG﹣12=0。
解得:FG=6,F(xiàn)G=﹣2(舍去)。
由勾股定理得:AB=BG=。
∴⊙O的半徑r是。
【解析】(1)由BD是⊙O的切線得出∠DBA=90°,推出CH∥BD,證△AEC∽△AFD,得出比例式即可。
(2)證△AEC∽△AFD,△AHE∽△ABF,推出BF=DF,根據(jù)直角三角形斜邊上中線性質(zhì)得出CF=DF=BF即可。
(3)求出EF=FC,求出∠G=∠FAG,推出AF=FG,求出AB=BG,連接OC,BC,求出∠FCB=∠CAB推出CG是⊙O切線,由切割線定理(或△AGC∽△CGB)得出(2+FG)2=BG×AG=2BG2,在Rt△BFG中,由勾股定理得出BG2=FG2﹣BF2,推出FG2﹣4FG﹣12=0,求出FG即可,從而由勾股定理求得AB=BG
的長,從而得到⊙O的半徑r。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
![]() |
AN |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(四川德陽卷)數(shù)學(xué)(帶解析) 題型:解答題
如圖,已知點(diǎn)C是以AB為直徑的⊙O上一點(diǎn),CH⊥AB于點(diǎn)H,過點(diǎn)B作⊙O 的切線交直線AC于點(diǎn)D,點(diǎn)E為CH的中點(diǎn),連結(jié)并延交BD于點(diǎn)F,直線CF交AB的延長線于G.
⑴求證:AE·FD=AF·EC;
⑵求證:FC=FB;
⑶若FB=FE=2,求⊙O 的半徑r的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com