【題目】如圖,在邊長為的正方形組成的網(wǎng)格中,的頂點(diǎn)均在格點(diǎn)上,點(diǎn)、的坐標(biāo)分別是,,關(guān)于軸對稱的圖形為.
畫出并寫出點(diǎn)的坐標(biāo)為________;
寫出的面積為________;
點(diǎn)在軸上,使的值最小,寫出點(diǎn)的坐標(biāo)為________.
【答案】;3.5.
【解析】
(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B關(guān)于y軸的對稱點(diǎn)A1、B1的位置,再與O順次連接即可,然后根據(jù)平面直角坐標(biāo)系寫出點(diǎn)B1的坐標(biāo);
(2)利用三角形所在的矩形的面積減去四周三個(gè)小直角三角形的面積列式計(jì)算即可得解;
(3)找出點(diǎn)A關(guān)于x軸的對稱點(diǎn)A′位置,連接A′B,根據(jù)軸對稱確定最短路線問題與x軸的交點(diǎn)即為所求的點(diǎn)P.
(1)△A1OB1如圖所示,
B1(1,3);
(2)△A1OB1的面積=3×3×1×2×2×3×1×3=9131.5=95.5=3.5;
(3)如圖所示,點(diǎn)P的坐標(biāo)為(2.2,0).
故答案為:(1)(1,3);(2)3.5;(3)(2.2,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.
(1)若花園的面積為192m2, 求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求花園面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,于E,,D是AE上的一點(diǎn),且,連接BD,CD.
試判斷BD與AC的位置關(guān)系和數(shù)量關(guān)系,并說明理由;
如圖2,若將繞點(diǎn)E旋轉(zhuǎn)一定的角度后,試判斷BD與AC的位置關(guān)系和數(shù)量關(guān)系是否發(fā)生變化,并說明理由;
如圖3,若將中的等腰直角三角形都換成等邊三角形,其他條件不變.
試猜想BD與AC的數(shù)量關(guān)系,請直接寫出結(jié)論;
你能求出BD與AC的夾角度數(shù)嗎?如果能,請直接寫出夾角度數(shù);如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩種型號的機(jī)器加工同一種零件,已知A型機(jī)器比B型機(jī)器每小時(shí)多加工20個(gè)零件,A型機(jī)器加工400個(gè)零件所用時(shí)間與B型機(jī)器加工300個(gè)零件所用時(shí)間相同.A型機(jī)器每小時(shí)加工零件的個(gè)數(shù)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】猜想與證明:
觀察下列各個(gè)等式的規(guī)律:
第一個(gè)等式:
第二個(gè)等式:
第三個(gè)等式:
第四個(gè)等式:
請用上述等式反映出的規(guī)律猜想并證明:
(1)直接寫出第五個(gè)等式;
(2)問題解決:猜想第 n 個(gè)等式(n≥1,用 n 的代數(shù)式表示),并證明你猜想的等式是正確的
(3)一個(gè)容器裝有11水,按照如下要求把水倒出:第1次倒出 水,第2次倒出的水量是L水的,第3次倒出的水量是水的,第4次倒出的水量是水的,……第次倒出的水量是L水的,…按照這種倒水的方法,求倒n次水倒出的總水量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c交x軸于(﹣1,0)、(3,0)兩點(diǎn),以下四個(gè)結(jié)論正確的是(用序號表示)______________.
(1)圖象的對稱軸是直線 x=1
(2)當(dāng)x>1時(shí),y隨x的增大而減小
(3)一元二次方程ax2+bx+c=0的兩個(gè)根是﹣1和3
(4)當(dāng)﹣1<x<3時(shí),y<0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,BC交O于點(diǎn)D,E是弧CD的中點(diǎn),連接AE交BC于點(diǎn)F,∠ABC=2∠EAC.
(1)求證:AB是⊙O的切線;
(2)若 tanB=,BD=6,求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)一般地,數(shù)軸上表示數(shù)m和數(shù)n的兩點(diǎn)之間的距離等于.如果表示數(shù)a和的兩點(diǎn)之間的距離是5,那么__________;
(2)若數(shù)軸上表示數(shù)a的點(diǎn)位于與6之間,求的值;
(3)當(dāng)a取何值時(shí),的值最小,最小值是多少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)期間,某商場計(jì)劃購進(jìn)甲、乙兩種商品,已知購進(jìn)甲商品2件和乙商品3件共需270元;購進(jìn)甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?
(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進(jìn)貨方案,并確定最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com