【題目】如圖,在△ABC中,∠ABC=60°,∠BAC=75°,AD,CF分別是BC、AB邊上的高且相交于點(diǎn)P,∠ABC的平分線BE分別交AD、CF于M、N.以下四個(gè)結(jié)論:①△PMN等邊三角形;②除了△PMN外,還有4個(gè)等腰三角形;③△ABD≌△CPD;④當(dāng)DM=2時(shí),則DC=6.其中正確的結(jié)論是:_____(填序號).
【答案】①②③④.
【解析】
由已知條件,根據(jù)三角形內(nèi)角和等于180°、角的平分線的性質(zhì)求得各個(gè)角的度數(shù),然后利用等腰三角形的判定進(jìn)行找尋,注意做到由易到難.
∵∠ABC=60°,∠BAC=75°,AD,CF分別是BC,AB邊上的高,
∴∠DAC=45°,又∵∠ACB=45°,
∴△ADC為等腰直角三角形.
∵∠ABC的平分線BE分別交AD,CF于M,N
∴∠ABM=30°,
又∵∠BAM=30°
∴△AMB為等腰三角形.
由題意可知∵∠NBC=∠NCB=30°
∴△BNC為等腰三角形.
∠PMN=∠MNP=60°
∴△MNP為等邊三角形,故①正確;
∵∠ABE=30°,∠BAC=75°,
∴∠BEA=75°,
∴△ABE為等腰三角形;
∴除了△PMN外,還有4個(gè)等腰三角形,故②正確;
∵AD,CF分別是BC,AB邊上的高,
∴∠ADB=∠BFC=90°,
∴∠BAD=∠ABD=∠ABD+∠BCF=90°,
∴∠BAD=∠DCP,
∵∠ADB=∠PDC=90°,AD=CD,
∴△ABD≌△CPD(ASA),故③正確;
在直角三角形BDM中,
∵MD=2,∠MBD=30°,
∴BM=4,
在等腰三角形AMB中,BM=AM,
∴AD=AM+MD=6,
在等腰直角三角形ADC中,AD=DC,
∴DC=6,故④正確;
故答案為:①②③④.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABE中,∠A=90°,點(diǎn)C在AB上,∠CEB=2∠AEC=45°.
(1)求∠B的度數(shù);
(2)求證:BC=2AE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車分別從地將一批物資運(yùn)往地,兩車離地的距離(千米)與其相關(guān)的時(shí)間(小時(shí))變化的圖像如圖所示.讀圖后填空:
(1)地與地之間的距離是______千米;
(2)甲車由地前往地時(shí)所對應(yīng)的與的函數(shù)解析式及定義域是__________;
(3)甲車由地前往地比乙車由地前往地多用了______小時(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,過格點(diǎn)A、B、C作一圓。
(1)弧AC的長為_____(結(jié)果保留π);
(2)點(diǎn)B與圖中格點(diǎn)的連線中,能夠與該圓弧相切的連線所對應(yīng)的格點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接鄭州市第二屆“市長杯”青少年校園足球超級聯(lián)賽,某學(xué)校組織了一次體育知識競賽.每班選25名同學(xué)參加比賽,成績分別為A、B、C、D四個(gè)等級,其中相應(yīng)等級得分依次記為100分、90分、80分、70分.學(xué)校將八年級一班和二班的成績整理并繪制成統(tǒng)計(jì)圖,如圖所示.
(1)把一班競賽成績統(tǒng)計(jì)圖補(bǔ)充完整;
(2)寫出下表中a、b、c的值:
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差 | |
一班 | a | b | 90 | 106.24 |
二班 | 87.6 | 80 | c | 138.24 |
(3)根據(jù)(2)的結(jié)果,請你對這次競賽成績的結(jié)果進(jìn)行分析.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,、是的三等分點(diǎn),過點(diǎn)、、分別作的垂線,垂足分別為、、,連接、,分別交、于、,記的面積為,的面積為,的面積為,則的值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=6,AC=7,BD、CD分別平分∠ABC、∠ACB,過點(diǎn)D作直線平行于BC,交AB、AC于E、F. 求△AEF的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過A(﹣1,0)、B(3,0)兩點(diǎn).
(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)當(dāng)0<x<3時(shí),求y的取值范圍;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明的袋子中裝有個(gè)白球和個(gè)紅球,這些球除顏色外都相同.
攪勻后,從中任意摸出一個(gè)球,恰好是紅球的概率是________;
攪勻后,從中任意摸出一個(gè)球,記錄顏色后放回、攪勻,再從中任意摸出一個(gè)球.
①求兩次都摸到紅球的概率;②經(jīng)過了次“摸球-記錄-放回”的過程,全部摸到紅球的概率是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com