【題目】如圖,在長(zhǎng)方形ABCD中,AB= 4,BC= 8,將長(zhǎng)方形紙片ABCD折疊,使點(diǎn)C恰好與A點(diǎn)重合,則折痕EF的長(zhǎng)是( )
A. B. C. D.
【答案】D
【解析】
設(shè)BE=x,則有CE=8-x,根據(jù)翻折的性質(zhì)可得AE=CE,然后在Rt△ABE中,利用勾股定理列出方程求出x,再根據(jù)翻折的性質(zhì)可得∠AEF=∠CEF,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠AFE=∠CEF,然后求出∠AEF=∠AFE,根據(jù)等角對(duì)等邊可得AE=AF,過點(diǎn)E作EH⊥AD于H,可得四邊形ABEH是矩形,根據(jù)矩形的性質(zhì)求出EH、AH,然后求出FH,再利用勾股定理列式計(jì)算即可得解.
解:設(shè)BE=x,則CE=BC-BE=8-x,
∵沿EF翻折后點(diǎn)C與點(diǎn)A重合,
∴AE=CE=8-x,
在Rt△ABE中,AB2+BE2=AE2,
即42+x2=(8-x)2
解得x=3,
∴AE=8-3=5,
由翻折的性質(zhì)得,∠AEF=∠CEF,
∵矩形ABCD的對(duì)邊AD∥BC,
∴∠AFE=∠CEF,
∴∠AEF=∠AFE,
∴AE=AF=5,
過點(diǎn)E作EH⊥AD于H,則四邊形ABEH是矩形,
∴EH=AB=4,
AH=BE=3,
∴FH=AF-AH=5-3=2,
在Rt△EFH中,EF= .
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,圖甲由長(zhǎng)方形①,長(zhǎng)方形②組成,圖甲通過移動(dòng)長(zhǎng)方形②得到圖乙.
(1)S甲= ,S乙= (用含a、b的代數(shù)式分別表示);
(2)利用(1)的結(jié)果,說明a2、b2、(a+b)(a﹣b)的等量關(guān)系;
(3)現(xiàn)有一塊如圖丙尺寸的長(zhǎng)方形紙片,請(qǐng)通過對(duì)它分割,再對(duì)分割的各部分移動(dòng),組成新的圖形,畫出圖形,利用圖形說明(a+b)2、(a﹣b)2、ab三者的等量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代對(duì)于利用方程解決實(shí)際問題早有研究,《九章算術(shù)》中提到這么一道“以繩測(cè)井”的題:以繩測(cè)井,若將繩三折測(cè)之,繩多四尺:若將繩四折測(cè)之,繩多一尺.繩長(zhǎng)、井深各幾何?
這道題大致意思是:用繩子測(cè)量水井深度,如果將繩子折成三等份,那么每等份井外余繩四尺:如果將繩子折成四等份,那么每等份井外余繩一尺.問繩長(zhǎng)和井深各多少尺?若設(shè)井深為x尺,則求解井深的方程正確的是( 。
A.3(x+4)=4(x+1)B.3x+4=4x+1
C.x+4=x+1D.x﹣4=x﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE.填空:
①∠AEB的度數(shù)為______;
②線段AD,BE之間的數(shù)量關(guān)系為______.
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE,請(qǐng)判斷∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根為x=2019,則一元二次方程a(x﹣1)2+b(x﹣1)=1必有一根為( )
A.B.2020C.2019D.2018
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形,對(duì)角線交于點(diǎn),點(diǎn)分別是的中點(diǎn),連接交于,連接
(1)證明:四邊形是平行四邊形
(2)點(diǎn)是哪些線段的中點(diǎn),寫出結(jié)論,并選擇一組給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把1,2,3,4......按下列方式排列:
(1)按照這樣的排列,第8行的最后一個(gè)數(shù)是 ,這個(gè)數(shù)的平方根是 ;正中間一列,自上而下第個(gè)數(shù)是 (用表示);
(2)求第15行所有數(shù)的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中建立平面直角坐標(biāo)系,已知△ABC三個(gè)頂點(diǎn)分別為A(﹣1,2)、B(2,1)、C(4,5).
(1)畫出△ABC關(guān)于x對(duì)稱的△A1B1C1;
(2)以原點(diǎn)O為位似中心,在x軸的上方畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2,并求出△A2B2C2的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com