如圖所示,有長(zhǎng)24米的籬笆,一面利用墻(墻的最大長(zhǎng)度為10米),圍成中間有一道籬笆的長(zhǎng)方形花圃.設(shè)花圃的邊AB長(zhǎng)為x,花圃的面積為s米2
(1)請(qǐng)求出s與x的函數(shù)關(guān)系式.
(2)按照題中要求,所圍的花圃面積能否是48米2?若能,求出的x值;若不能,請(qǐng)說(shuō)明理由.
(參考公式:二次函數(shù)y=ax2+bx+c=0,當(dāng)x=時(shí),

【答案】分析:(1)根據(jù)長(zhǎng)方形的面積計(jì)算公式可以求出函數(shù)關(guān)系式.
(2)假設(shè)所圍的花圃面積是48米2,求得方程的解,再檢驗(yàn)一下是否符合實(shí)際情況.
解答:解:(1)根據(jù)題意得s=x(24-3x)
∴s=-3x2+24x;

(2)不能;
把s=48代入得-3x2+24x=48
解得x=4
即AB=4
∴AD=24-3x=12
這與墻的最大長(zhǎng)度為10米矛盾,不合實(shí)際.
∴所圍的花圃面積不能是48米2
點(diǎn)評(píng):這一題先用長(zhǎng)方形的面積計(jì)算公式求出函數(shù)關(guān)系式,再用一元二次方程求得解,結(jié)合實(shí)際情況得出答案.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,有長(zhǎng)24米的籬笆,一面利用墻(墻的最大長(zhǎng)度為10米),圍成中間有一道籬笆的長(zhǎng)方形精英家教網(wǎng)花圃.設(shè)花圃的邊AB長(zhǎng)為x,花圃的面積為s米2
(1)請(qǐng)求出s與x的函數(shù)關(guān)系式.
(2)按照題中要求,所圍的花圃面積能否是48米2?若能,求出的x值;若不能,請(qǐng)說(shuō)明理由.
(參考公式:二次函數(shù)y=ax2+bx+c=0,當(dāng)x=-
b
2a
時(shí),y最大(小)值=
4ac-b2
4a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,有長(zhǎng)24米的籬笆,一面利用墻(墻的最大長(zhǎng)度為10米),圍成中間有一道籬笆的長(zhǎng)方形花圃.設(shè)花圃的邊AB長(zhǎng)為x,花圃的面積為s米2
(1)請(qǐng)求出s與x的函數(shù)關(guān)系式.
(2)按照題中要求,所圍的花圃面積能否是48米2?若能,求出的x值;若不能,請(qǐng)說(shuō)明理由.
(參考公式:二次函數(shù)y=ax2+bx+c=0,當(dāng)x=數(shù)學(xué)公式時(shí),數(shù)學(xué)公式

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,有長(zhǎng)24米的籬笆,一面利用墻(墻的最大長(zhǎng)度為10米),圍成中間隔有一道籬笆的長(zhǎng)方形花圃.設(shè)花圃的邊AB長(zhǎng)為x,花圃的面積為s米2

(1)請(qǐng)求出s與x的函數(shù)關(guān)系式.

(2)所圍的花圃面積能否是48米? 若能,求出的x值; 若不能,請(qǐng)說(shuō)明理由.

(參考公式:二次函數(shù)y=ax2+bx+c,當(dāng)x=-時(shí),

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年黑龍江省哈爾濱市第69中學(xué)九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,有長(zhǎng)24米的籬笆,一面利用墻(墻的最大長(zhǎng)度為10米),圍成中間有一道籬笆的長(zhǎng)方形花圃.設(shè)花圃的邊AB長(zhǎng)為x,花圃的面積為s米2
(1)請(qǐng)求出s與x的函數(shù)關(guān)系式.
(2)按照題中要求,所圍的花圃面積能否是48米2?若能,求出的x值;若不能,請(qǐng)說(shuō)明理由.
(參考公式:二次函數(shù)y=ax2+bx+c=0,當(dāng)x=時(shí),

查看答案和解析>>

同步練習(xí)冊(cè)答案