【題目】已知實數(shù)m滿足m2﹣m﹣2=0,當m=時,函數(shù)y=xm+(m+1)x+m+1的圖象與x軸無交點.

【答案】2或﹣1
【解析】解:解方程m2﹣m﹣2=0得m=2或﹣1, 當m=2時,函數(shù)解析式為y=x2+3x+3,△=32﹣4×1×3=﹣3<0,圖象與x軸無交點;
當m=﹣1時,函數(shù)解析式為y=x1= ,反比例函數(shù),圖象與x軸無交點.
故m=2或﹣1時,函數(shù)y=xm+(m+1)x+m+1的圖象與x軸無交點.
【考點精析】通過靈活運用反比例函數(shù)的性質(zhì)和拋物線與坐標軸的交點,掌握性質(zhì):當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減。 當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大;一元二次方程的解是其對應的二次函數(shù)的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AD是高,CE是中線,點G是CE的中點,DG⊥CE,點G為垂足.
(1)求證:DC=BE;
(2)若∠AEC=66°,求∠BCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P內(nèi)任意一點,,點M和點N分別是射線OA和射線OB上的動點,周長的最小值是5cm,則的度數(shù)是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是某同學對多項式(x24x+2)(x24x+6+4進行因式分解的過程.

解:設x24x=y

原式=y+2)(y+6+4 (第一步)

=y2+8y+16 (第二步)

=y+42(第三步)

=x24x+42(第四步)

回答下列問題:

1)該同學第二步到第三步運用了因式分解的_______

A.提取公因式

B.平方差公式

C.兩數(shù)和的完全平方公式

D.兩數(shù)差的完全平方公式

2)該同學因式分解的結果是否徹底?________.(填徹底不徹底)若不徹底,請直接寫出因式分解的最后結果_________

3)請你模仿以上方法嘗試對多項式(x22x)(x22x+2+1進行因式分解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系xOy中的點P(a,b),若點P′的坐標為(a+kb,ka+b)(其中k為常數(shù),且k≠0),

則稱點P′為點P“k屬派生點.例如:P(1,4)的“2屬派生點P′(1+2×4,2×1+4),即P′(9,6).

(Ⅰ)點P(﹣2,3)的“3屬派生點”P′的坐標為   ;

(Ⅱ)若點P“5屬派生點”P′的坐標為(3,﹣9),求點P的坐標;

(Ⅲ)若點Px軸的正半軸上,點P“k屬派生點P′點,且線段PP′的長度為線段OP長度的2倍,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各圖是在同一直角坐標系內(nèi),二次函數(shù)y=ax2+(a+c)x+c與一次函數(shù)y=ax+c的大致圖象,有且只有一個是正確的,正確的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么一次函數(shù)y=ax+b的圖象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某賓館有客房50間,當每間客房每天的定價為220元時,客房會全部住滿;當每間客房每天的定價增加10元時,就會有一間客房空閑,設每間客房每天的定價增加x元時,客房入住數(shù)為y間.
(1)求y與x的函數(shù)關系式(不要求寫出x的取值范圍);
(2)如果每間客房入住后每天的各種支出為40元,不考慮其他因素,則該賓館每間客房每天的定價為多少時利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD⊥BCD點,E、F分別為DB、DC的中點,則圖中共有全等三角形 對.

查看答案和解析>>

同步練習冊答案