【題目】甲、乙兩人周末從同一地點(diǎn)出發(fā)去某景點(diǎn),因乙臨時(shí)有事,甲先出發(fā),甲出發(fā)0.2小時(shí)后乙開汽車前往,設(shè)甲行駛的時(shí)間為x(h),甲、乙兩人行駛的路程分別為y1(km)與y2(km),如圖是y1y2關(guān)于x的函數(shù)圖像.

1)求x為何值時(shí),兩人相遇?

2)求x為何值時(shí),兩人相距5km?(直接寫出結(jié)果)

【答案】1)當(dāng)x=0.8時(shí),兩人相遇;(2x小時(shí),兩人相距5千米.

【解析】

1)用待定系數(shù)求函數(shù)解析式,再通過(guò)可解方程組求解;(2)根據(jù)兩者的位置關(guān)系,分4種情況分析,解方程可得.

解:(1)設(shè)OA:, BC:,

過(guò)點(diǎn)(1.2,72) ,

所以,

過(guò)點(diǎn)(0.2,0)、 (1.1,72)

解得

.

解得

∴當(dāng)x=0.8時(shí),兩人相遇.

(2)60x=5

解得x=

60x- (80x- 16)=5 ,

解得x= ;

80x- 16- 60x=5 ,

解得x=

60x=72-5

解得x=

故當(dāng)x小時(shí),兩人相距5千米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD的對(duì)角線ACBD交于O,EF過(guò)點(diǎn)OAD,BC分別交于E,F,若AB4,BC5OE1.5,則四邊形EFCD的周長(zhǎng)_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將矩形ABCD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)得到矩形A1BC1D1,點(diǎn)A、C、D的對(duì)應(yīng)點(diǎn)分別為A1、C1、D1

1)當(dāng)點(diǎn)A1落在AC上時(shí)

①如圖1,若∠CAB60°,求證:四邊形ABD1C為平行四邊形;

②如圖2,AD1CB于點(diǎn)O.若∠CAB≠60°,求證:DOAO;

2)如圖3,當(dāng)A1D1過(guò)點(diǎn)C時(shí).若BC5CD3,直接寫出A1A的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個(gè)步行過(guò)程中,甲、乙兩人間的距離y()與甲出發(fā)的時(shí)間x()之間的關(guān)系如圖中折線OA-AB-BC-CD所示.

(1)求線段AB的表達(dá)式,并寫出自變量x的取值范圍;

(2)求乙的步行速度;

(3)求乙比甲早幾分鐘到達(dá)終點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,則點(diǎn)D到BC的距離是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A在反比例函數(shù) 的圖象上,作,邊BCx軸上,點(diǎn)D為斜邊AC的中點(diǎn),連結(jié)DB并延長(zhǎng)交y軸于點(diǎn)E,若的面積為6,則k=___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:在平面內(nèi),我們把既有大小又有方向的量叫做平面向量。平面向量可以用有向線段表示,有向線段的長(zhǎng)度表示向量的大小,有向線段的方向表示向量的方向。其中大小相等,方向相同的向量叫做相等向量。如以正方形的四個(gè)頂點(diǎn)中某一點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出8個(gè)不同的向量:、、、、、(由于是相等向量,因此只算一個(gè))

⑴作兩個(gè)相鄰的正方形(如圖一)。以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為,試求的值;

⑵作個(gè)相鄰的正方形(如圖二)“一字型”排開。以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為,試求的值;

⑶作個(gè)相鄰的正方形(如圖三)排開。以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為,試求的值;

⑷作個(gè)相鄰的正方形(如圖四)排開。以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為,試求的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】蘇科版九年級(jí)下冊(cè)數(shù)學(xué)課本91頁(yè)有這樣一道習(xí)題:

(1)復(fù)習(xí)時(shí),小明與小亮、數(shù)學(xué)老師交流了自己的兩個(gè)見解,并得到了老師的認(rèn)可:

①可以假定正方形的邊長(zhǎng)AB=4a,則AEDE=2a,DFa,利用兩邊分別成比例且夾角相等的兩個(gè)三角形相似可以證明ABEDEF;請(qǐng)結(jié)合提示寫出證明過(guò)程

②圖中的相似三角形共三對(duì),而且可以借助于ABEDEF中的比例線段來(lái)證明EBF與它們相似證明過(guò)程如下:

(2)交流之后,小亮嘗試對(duì)問(wèn)題進(jìn)行了變化,在老師的幫助下,提出了新的問(wèn)題,請(qǐng)你解答:

已知:如圖,在矩形ABCD中,EAD的中點(diǎn),EFECABF,連結(jié)FC

ABAE

①求證:AEFECF;

②設(shè)BC=2,ABa,是否存在a值,使得AEFBFC相似.若存在,請(qǐng)求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是一個(gè)單位長(zhǎng)度,在平面直角坐標(biāo)系內(nèi),△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A1,4),B1,1),C31).

1)畫出△ABC左平移4個(gè)單位得到的△A1B1C1,且A1的坐標(biāo)為   ;

2)畫出△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后的△A2B2C2

3)在(2)的條件下,求線段BC掃過(guò)的面積(結(jié)果保留π).

查看答案和解析>>

同步練習(xí)冊(cè)答案