【題目】甲、乙兩人周末從同一地點(diǎn)出發(fā)去某景點(diǎn),因乙臨時(shí)有事,甲先出發(fā),甲出發(fā)0.2小時(shí)后乙開汽車前往,設(shè)甲行駛的時(shí)間為x(h),甲、乙兩人行駛的路程分別為y1(km)與y2(km),如圖是y1與y2關(guān)于x的函數(shù)圖像.
(1)求x為何值時(shí),兩人相遇?
(2)求x為何值時(shí),兩人相距5km?(直接寫出結(jié)果)
【答案】(1)當(dāng)x=0.8時(shí),兩人相遇;(2)x為或或或小時(shí),兩人相距5千米.
【解析】
(1)用待定系數(shù)求函數(shù)解析式,再通過(guò)可解方程組求解;(2)根據(jù)兩者的位置關(guān)系,分4種情況分析,解方程可得.
解:(1)設(shè)OA:, BC:,
則過(guò)點(diǎn)(1.2,72) ,
所以,
過(guò)點(diǎn)(0.2,0)、 (1.1,72) ,
解得
∴.
∴
解得
∴當(dāng)x=0.8時(shí),兩人相遇.
(2)①60x=5,
解得x=
②60x- (80x- 16)=5 ,
解得x= ;
③80x- 16- 60x=5 ,
解得x=
④60x=72-5
解得x=
故當(dāng)x為或或或小時(shí),兩人相距5千米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD的對(duì)角線AC,BD交于O,EF過(guò)點(diǎn)O與AD,BC分別交于E,F,若AB=4,BC=5,OE=1.5,則四邊形EFCD的周長(zhǎng)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將矩形ABCD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)得到矩形A1BC1D1,點(diǎn)A、C、D的對(duì)應(yīng)點(diǎn)分別為A1、C1、D1
(1)當(dāng)點(diǎn)A1落在AC上時(shí)
①如圖1,若∠CAB=60°,求證:四邊形ABD1C為平行四邊形;
②如圖2,AD1交CB于點(diǎn)O.若∠CAB≠60°,求證:DO=AO;
(2)如圖3,當(dāng)A1D1過(guò)點(diǎn)C時(shí).若BC=5,CD=3,直接寫出A1A的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個(gè)步行過(guò)程中,甲、乙兩人間的距離y(米)與甲出發(fā)的時(shí)間x(分)之間的關(guān)系如圖中折線OA-AB-BC-CD所示.
(1)求線段AB的表達(dá)式,并寫出自變量x的取值范圍;
(2)求乙的步行速度;
(3)求乙比甲早幾分鐘到達(dá)終點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,則點(diǎn)D到BC的距離是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A在反比例函數(shù) 的圖象上,作,邊BC在x軸上,點(diǎn)D為斜邊AC的中點(diǎn),連結(jié)DB并延長(zhǎng)交y軸于點(diǎn)E,若的面積為6,則k=___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:在平面內(nèi),我們把既有大小又有方向的量叫做平面向量。平面向量可以用有向線段表示,有向線段的長(zhǎng)度表示向量的大小,有向線段的方向表示向量的方向。其中大小相等,方向相同的向量叫做相等向量。如以正方形的四個(gè)頂點(diǎn)中某一點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出8個(gè)不同的向量:、、、、、、、(由于和是相等向量,因此只算一個(gè))
⑴作兩個(gè)相鄰的正方形(如圖一)。以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為,試求的值;
⑵作個(gè)相鄰的正方形(如圖二)“一字型”排開。以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為,試求的值;
⑶作個(gè)相鄰的正方形(如圖三)排開。以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為,試求的值;
⑷作個(gè)相鄰的正方形(如圖四)排開。以其中的一個(gè)頂點(diǎn)為起點(diǎn),另一個(gè)頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個(gè)數(shù)記為,試求的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】蘇科版九年級(jí)下冊(cè)數(shù)學(xué)課本91頁(yè)有這樣一道習(xí)題:
(1)復(fù)習(xí)時(shí),小明與小亮、數(shù)學(xué)老師交流了自己的兩個(gè)見解,并得到了老師的認(rèn)可:
①可以假定正方形的邊長(zhǎng)AB=4a,則AE=DE=2a,DF=a,利用“兩邊分別成比例且夾角相等的兩個(gè)三角形相似”可以證明△ABE∽△DEF;請(qǐng)結(jié)合提示寫出證明過(guò)程.
②圖中的相似三角形共三對(duì),而且可以借助于△ABE與△DEF中的比例線段來(lái)證明△EBF與它們相似.證明過(guò)程如下:
(2)交流之后,小亮嘗試對(duì)問(wèn)題進(jìn)行了變化,在老師的幫助下,提出了新的問(wèn)題,請(qǐng)你解答:
已知:如圖,在矩形ABCD中,E為AD的中點(diǎn),EF⊥EC交AB于F,連結(jié)FC.
(AB>AE)
①求證:△AEF∽△ECF;
②設(shè)BC=2,AB=a,是否存在a值,使得△AEF與△BFC相似.若存在,請(qǐng)求出a的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是一個(gè)單位長(zhǎng)度,在平面直角坐標(biāo)系內(nèi),△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,4),B(1,1),C(3,1).
(1)畫出△ABC左平移4個(gè)單位得到的△A1B1C1,且A1的坐標(biāo)為 ;
(2)畫出△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后的△A2B2C2;
(3)在(2)的條件下,求線段BC掃過(guò)的面積(結(jié)果保留π).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com