(本題滿分10分)在邊長為1的正方形網(wǎng)格中,有形如帆船的圖案①和半徑為2的⊙P.
1.⑴將圖案①進(jìn)行平移,使A點(diǎn)平移到點(diǎn)E,畫出平移后的圖案;
2.⑵以點(diǎn)M為位似中心,在網(wǎng)格中將圖案①放大2倍,畫出放大后的圖案,并在放大后的圖案中標(biāo)出線段AB的對應(yīng)線段CD;
3.⑶在⑵所畫的圖案中,線段CD被⊙P所截得的弦長為 ▲ (結(jié)果保留根號).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
(本題滿分10分)在平面直角坐標(biāo)系中,點(diǎn)P從原點(diǎn)O出發(fā),每次向上平移2個單位長度或向右平移1個單位長度.
(1)實驗操作: 在平面直角坐標(biāo)系中描出點(diǎn)P從點(diǎn)O出發(fā),平移1次后,2次后,3次后可能到達(dá)的點(diǎn),并把相應(yīng)點(diǎn)的坐標(biāo)填寫在表格中:
(2)觀察發(fā)現(xiàn):任一次平移,點(diǎn)P可能到達(dá)的點(diǎn)在我們學(xué)過的一種函數(shù)的圖象上,如:平移1次后在函數(shù) 的圖象上;平移2次后在函數(shù) 的圖象上……由此我們知道,平移次后在函數(shù) 的圖象上.(請?zhí)顚懴鄳?yīng)的解析式)
(3)探索運(yùn)用:點(diǎn)P從點(diǎn)O出發(fā)經(jīng)過次平移后,到達(dá)直線上的點(diǎn)Q,且平移的路徑長不小于50,不超過56,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(海南卷)數(shù)學(xué)解析版 題型:解答題
(本題滿分10分)
在直角三角形ABC中,∠C=90°,,∠B的平分線BD交AC于D,BD=16.求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年高級中等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)卷(山東萊蕪) 題型:解答題
(本題滿分10分)
在 ABCD中,AC、BD交于點(diǎn)O,過點(diǎn)O作直線EF、GH,分別交平行四邊形的四條邊于E、G、F、H四點(diǎn),連結(jié)EG、GF、FH、HE.
(1)如圖①,試判斷四邊形EGFH的形狀,并說明理由;
(2)如圖②,當(dāng)EF⊥GH時,四邊形EGFH的形狀是 ;
(3)如圖③,在(2)的條件下,若AC=BD,四邊形EGFH的形狀是 ;
(4)如圖④,在(3)的條件下,若AC⊥BD,試判斷四邊形EGFH的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆海南省三亞市七年級下學(xué)期期末考試數(shù)學(xué) 題型:解答題
(本題滿分10分)
在直角三角形ABC中,∠C=90°,,∠B的平分線BD交AC于D,BD=16.求AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com