【題目】如圖,四邊形ABCD中,AB=CD,對角線AC,BD相交于點O,AE⊥BD于點E,CF⊥BD于點F,連接AF,CE,若DE=BF,則下列結論:①CF=AE;②OE=OF;③四邊形ABCD是平行四邊形;④圖中共有四對全等三角形.其中正確結論的個數(shù)是
A.4 B.3 C.2 D.1
【答案】B
【解析】
試題∵DE=BF,∴DF=BE。
∵在Rt△DCF和Rt△BAE中,CD=AB,DF=BE,∴Rt△DCF≌Rt△BAE(HL)。
∴FC=EA。故①正確。
∵AE⊥BD于點E,CF⊥BD于點F,∴AE∥FC。
∵FC=EA,∴四邊形CFAE是平行四邊形。
∴EO=FO。故②正確。
∵Rt△DCF≌Rt△BAE,∴∠CDF=∠ABE。∴CD∥AB。
∵CD=AB,∴四邊形ABCD是平行四邊形。故③正確。
由上可得:△CDF≌△BAE,△CDO≌△BAO,△CDE≌△BAF,△CFO≌△AEO,△CEO≌△AFO,△ADF≌△CBE等。故④圖中共有6對全等三角形錯誤。
故正確的有3個。故選B。
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,數(shù)軸上的點A、B分別表示數(shù)a、b,則點A、B(點B在點A的右側)之間的距離表示為AB=b﹣a,若點C對應的數(shù)為c,滿足|a+3|+(c﹣9)2=0.
(1)寫出AC的值 .
(2)如圖②,點D在點C的右側且距離m(m>0)個單位,點B在線段AC上,滿足AB+AC=BD,求AB的值(用含有m的代數(shù)式表示).
(3)如圖③,若點D在點C的右側6個單位處,點P從點A出發(fā)以2個單位/秒的速度向右運動,同時點M從點C出發(fā)以1個單位/秒的速度也向右運動,當?shù)竭_D點后以原來的速度向相反的方向運動.求經(jīng)過多長時間,點P和點M之間的距離是2個單位?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】x1、x2、x3、…x20是20個由1,0,﹣1組成的數(shù),且滿足:①x1+x2+x3+…+x20=4,②(x1﹣1)2+(x2﹣1)2+(x3﹣1)2…+(x20﹣1)2=32,則這列數(shù)中1的個數(shù)為_____個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)軸上的點A和點B之間的距離為28個單位長度,點A在原點左邊,距離原點8個單位長度,點B在原點的右邊.
(1)請直接寫出A,B兩點所對應的數(shù).
(2)數(shù)軸上點A以每秒1個單位長度的速度出發(fā)向左運動,同時點B以每秒3個單位長度的速度出發(fā)向左運動,在點C處追上了點A,求C點對應的數(shù).
(3)已知,數(shù)軸上點M從點A向左出發(fā),速度為每秒1個單位長度,同時點N從點B向左出發(fā),速度為每秒2個單位長度,經(jīng)t秒后點M、N、O(O為原點)其中的一點恰好到另外兩點的距離相等,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)÷-×+; (2)--( -2);
(3)(2-)2017×(2+)2016-2-(-)0 (4)(a+2+b)÷(+)-(-).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AF、CE分別是∠BAD和∠BCD的角平分線,根據(jù)現(xiàn)有的圖形,請?zhí)砑右粋條件,使四邊形AECF為菱形,則添加的一個條件可以是__________.(只需寫出一個即可,圖中不能再添加別的“點”和“線”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,所有小正方形的邊長都為1,A、B、C都在格點上.
(1)過點C畫直線AB的平行線(不寫作法,下同);
(2)過點A畫直線BC的垂線,并注明垂足為G;過點A畫直線AB的垂線,交BC于點H.
(3)線段 的長度是點A到直線BC的距離,線段AH的長度是點 到直線 的距離.
(4)因為直線外一點到直線上各點連接的所有線中,垂線段最短,所以線段AG、AH的大小關系為AG AH.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC上任意一點,過點D分別向AB、AC引垂線,垂足分別為點E、F.
(1)如圖①,當點D在BC的什么位置時,DE=DF?并證明;
(2)在滿足第一問的條件下,連接AD,此時圖中共有幾對全等三角形?請寫出所有的全等三角形(不必證明);
(3)如圖②,過點C作AB邊上的高CG,請問DE、DF、CG的長之間存在怎樣的等量關系?并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com