【題目】如圖1,中,內一點,將繞點按逆時針方向旋轉角得到,點的對應點分別為點,且三點在同一直線上.

1)填空:   (用含的代數(shù)式表示);

2)如圖2,若,請補全圖形,再過點于點,然后探究線段之間的數(shù)量關系,并證明你的結論;

3)若,且點滿足,直接寫出點的距離.

【答案】1;(2理由見解析;(3

【解析】

1)由旋轉的性質可得,即可求解;

2)由旋轉的性質可得,可證是等邊三角形,由等邊三角形的性質可得,即可求解;

3)分點的上方和的下方兩種情況討論,利用勾股定理可求解.

1繞點按逆時針方向旋轉角得到

,

故答案為:

2

理由如下:如圖,

繞點按逆時針方向旋轉角得到

是等邊三角形,且

3)如圖,當點上方時,過點于點,

,點,點,點四點共圓

,

(不合題意舍去),

若點的下方,過點,

同理可得:

的距離為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某校綜合實踐活動小組的同學欲測量公園內一棵樹DE的高度,他們在這棵樹的正前方一座樓亭前的臺階上A點處測得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺階下的點C處,測得樹頂端D的仰角為60°.已知A點的高度AB3米,臺階AC的坡度為1(ABBC=1),且B、C、E三點在同一條直線上.請根據(jù)以上條件求出樹DE的高度

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若n是一個兩位正整數(shù),且n的個位數(shù)字大于十位數(shù)字,則稱n為“兩位遞增數(shù)”(如13,35,56等).在某次數(shù)學趣味活動中,每位參加者需從由數(shù)字1,2,3,4,5,6構成的所有的“兩位遞增數(shù)”中隨機抽取1個數(shù),且只能抽取一次.

(1)寫出所有個位數(shù)字是5的“兩位遞增數(shù)”;

(2)請用列表法或樹狀圖,求抽取的“兩位遞增數(shù)”的個位數(shù)字與十位數(shù)字之積能被10整除的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點E、F分別是BC,CD邊上的動點,且CE+CF4,DEAF相交于點P,在點E,F運動的過程中,CP的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線yax2+bx+3a≠0)經過點A(10)和點B(3,0),與y軸交于點C

1)求此拋物線的解析式;

2)若點P是直線BC下方的拋物線上一動點(不點B,C重合),過點Py軸的平行線交直線BC于點D,設點P的橫坐標為m

①用含m的代數(shù)式表示線段PD的長.

②連接PB,PC,求PBC的面積最大時點P的坐標.

3)設拋物線的對稱軸與BC交于點E,點M是拋物線的對稱軸上一點,Ny軸上一點,是否存在這樣的點M和點N,使得以點C、E、M、N為頂點的四邊形是菱形?如果存在,請直接寫出點M的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中(如圖),已知拋物線x軸交于點A(1,0)和點B,與y軸交于點C(0,2)

1)求該拋物線的表達式,并寫出其對稱軸

2)點E為該拋物線的對稱軸與x軸的交點,點F在對稱軸上,四邊形ACEF為梯形,求點F的坐標

3)點D為該拋物線的頂點,設點P(t, 0),且t3,如果△BDP和△CDP的面積相等,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠A=∠BAEBE,點DAC邊上,∠1=∠2,AEBD相交于點O

1)求證:△AEC≌△BED;

2)若∠150°,則∠BDE   °.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】洛陽某科技公司生產和銷售A、B兩類套裝電子產品已知3A類產品和2B類產品的總售價是24萬元;2A類產品和3B類產品的總售價是26萬元公司生產一套A類產品的成品是萬元,生產B類產品的成本如下表:

套數(shù)

1

2

3

4

總成本萬元

8

12

16

20

該公司A類產品和B類產品的銷售單價分別是多少萬元?

①公司為了方便生產,只安排生產一類電子產品,且銷售順利,設生產銷售該類電子產品x套:公司銷售xA類產品的利潤________;公司銷售xB類產品的利潤________

②怎樣安排生產,才能使公司獲得的利潤較高?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個盒子中裝有2個紅球,1個白球和1個藍球,這些球除顏色外都相同,小明和小凡準備用這些球做游戲,游戲規(guī)則如下:從盒子中隨機摸出一個球,記下顏色后放回,再從中隨機摸出一個球,若兩次摸到的球的顏色都是紅色,小明勝;若兩次摸到的球的顏色能配成紫色,則小凡勝,這個游戲對雙方公平嗎?請說明理由.

查看答案和解析>>

同步練習冊答案